MASTERS COURSE "MATERIALS SCIENCE AND SIMULATION"

MODULE DESCRIPTIONS

January 2025

COURSE SCHEDULE

Mod	ule	Module description	Semester							
			WH	CP	1st	2nd	3rd	4th		
					sem.	sem.	sem.	sem.		
					LE	LE	LE	LΕ		
		Compulsory modules								
1		Fundamental Materials Physics	4	5	22					
2		Thermodynamics and Statistical Mechanics	3	4	2 1					
3		Elements of Microstructure	4	6	3 1					
4		Programming Concepts in Materials Science	4	6	22					
5		Numerical Methods in Materials Science	4	6		3 1				
6		Fundamental option modules								
		Fundamental Option Module 1	4	6		3 1				
		Fundamental Option Module 2	4	6		3 1				
		Fundamental Option Module 3	4	6			3 1			
7		Advanced option module								
		Advanced Option 1	4	6		22				
		Advanced Option 2	4	6			22			
		Advanced Option 3	4	6			22			
		General option module								
8		General Option Module	4	6			22			
		Key qualifications								
9		Documenting and Communicating Science	4	6						
	9a	Documenting and Communicating Science 1	2	3	х					
	9b	Documenting and Communicating Science 2	2	3		х				
10		Non-technical elective or language course	2	3		х				
		Practical modules								
11		Materials Modelling Lab	4	6	х					
		Research project and master thesis								
12		Research Project (180 h)		6			х			
13		Master Thesis and Seminar (900 h)		30				х		
		Sum semester weekly hours	80		20	20	20	20		
		Sum workload	3600		900	900	900	900		
		Sum of credit points		120	30	30	30	30		

Note: The title of lectures (submodules) referring to one module are typed in italic. The according weekly hours (WH) and credit points (CP) are summed in the title line of the module.

EXPLANATIONS

Compulsory Modules

1-5 The compulsory modules comprise the scientific focus of the programme and are therefore mandatory for every student.

- Fundamental Materials Physics (I)
- Thermodynamics and Statistical Mechanics (2)
- Elements of Microstructure (3)
- Programming Concepts in Materials Science (4)
- Numerical Methods in Materials Science (5)

Fundamental Option Modules in Materials Science

6 Three elective modules can be chosen freely from:

2nd semester/summer term

- Quantum Mechanics in Materials Science (6.1)
- Microstructure and Mechanical Properties (6.2)
- Advanced Characterization Methods (6.3)
- Materials Informatics (6.4)
- Microstructure Evolution during Materials Processing (6.5)

3rd semester/winter term

- Atomistic Simulation Methods (6.6)
- Advanced Programming for Materials Science (6.7)
- Functional Materials: Properties and Modelling (6.8)

Advanced Option Modules in Materials Science

7

Three optional modules can be chosen freely from the modules listed below (but also from the fundamental option modules listed above, see 6):

2nd semester/summer term

- Interfaces and Surfaces (7.1)
- Data-driven Materials Science Hands on (7.2)
- Introduction to Parallel- and Scientific Computing (7.3)
- Physics of Complex Phase Transitions in Solids (7.4)
- The CALPHAD Method in Thermodynamics and Diffusion (7.5)
- Fundamental Aspects of Materials Science and Engineering (7.6)
- Polymers and Shape Memory Alloys (7.7)
- Computational Plasticity (7.8)
- Engineering Ceramics and Coating Technology (7.9)
- Theory of Electronic Excitations in Materials (7.10)

3rd semester/winter term

- Phase-field Theory and Application (7.11)
- Multiscale Mechanics of Materials (7.12)
- Advanced Atomistic Simulation Methods (7.13)
- Computational Fracture Mechanics (7.14)

- Advanced Statistical Methods in Materials Science (7.15)
- Surface Science and Corrosion (7.16)
- Materials for Aerospace Applications (7.17)
- Introduction to 3-Dimensional Materials Characterization Techniques (7.18)
- Application and Implementation of Electronic Structure Methods (7.19)
- Lattice Boltzmann Modelling: From Simple Flows to Interface Driven Phenomena (7.20)
- Interatomic Potentials (7.21)

General Option Module

8 Any module from any of RUB's master's programmes will be recognized. A selection of courses offered is listed under points 6 and 7 (Elective and Specialization Modules in MS). Courses from the RUB's main course catalogue and from the international course catalogue can be taken into account. It is also possible to take a six-week industrial internship (8.1).

Key Qualifications

- 9 The Key Qualification module 9 is devided into two parts, Documenting and Communicating Science 1 (1st semester) and Documenting and Communicating Science 2 (2nd semester).
- 10This non-technical elective module should be chosen from the key qualifications offers like German language for foreigners, Project and Quality
Management, Business Skills, Intercultural Competence etc.

Practical Module

11 Materials Modelling Lab: 4-5 block lectures, introduction of methods, including practical demonstration, followed by hands-on blocks.

Scientific Theses

12, 13 The research project and the master thesis with seminar represent practical self-guided research and make up 30% of all credit points.

EXAMINATIONS, CREDITS AND GRADES

Each module is usually assessed by one final examination, which defines the grade for this module and is the prerequisite for credit point allocation. Module 9 spans over two semesters with two examinations, each at the end of the corresponding term.

Credit points are allocated in accordance with the students' work load comprising classes and preparation time for classes and assignments. The work load makes up the double or triple amount of the instructional contact time, depending on the degree of difficulty of the class. Together with the results of written and oral examinations as well as of practical exercises (if applicable) they form the basis for the final module grade. Since the Master's course puts an emphasis on practical research in the project report and the Master's thesis the results of these two assignments count for 30% of the total grade. The total grade is derived according to the average of all allocated module credits.

Semester	1	2	3	4	Σ
Compulsory modules: 1, 2, 3, 4, 5, 11	27	6	0		33
Option modules: 6, 7, 8	0	18	24		42
Key qualifications: modules 9, 10	3	6			9
Research project: module 12			6		6
Master's thesis: module 13				30	30
Σ	30	30	30	30	120

CREDIT ALLOCATION

Credits are allocated according the the following scheme:

•	Compulsory	33 CP = 28%
•	Option	42 CP = 35%
•	Key qualifications	9 CP = 7%
•	Research project and Master's thesis	36 CP = 30%

DE-REGISTRATION FROM EXAMS

The current examination regulations allow to withdraw from examination registrations.

In the case of compulsory modules (I-5, II), the withdrawal must be made in written form, stating valid reasons. Deregistration from elective and compulsory elective modules must also be made in written form, but without giving reasons, up to I week before the examination date.

Valid reasons include, for example:

• Illness of the candidate. In this case, a doctor's certificate and, in cases of doubt, a certificate from a medical officer of the RUB must also be submitted.

• The illness of a child or person to be cared for mainly alone is equivalent to the illness of the candidate.

• The examination board decides on further valid reasons.

MODULE SCHEME AND CREDITS

Semester I	Semester II	Sen	nester III	Semester IV
Fundamental Materials Physics (5 CP)	Numerical Methods Materials Science (6 CP)	in Fundame Option M (6 CP)	ental Iodule 3	Master Thesis and Seminar (30 CP)
Thermodynamics and Statistical Mechanics (4 CP)	Fundamental Option Module 1	Advance Option M	d Iodule 2	
Elements of Microstructure	(0 CP)	(8 CP)		
(6 CP)	Fundamental Option Module 2	Advance Option M	d Iodule 3	
Programming Concepts in Materials Science	(0 CP)	(6 CP)		
(6 CP)	Advanced Option Module 1	General Option M	lodule	
Materials Modelling Lab	(6 CP)	(6 CP)		
(6 CP)	Docum. and Commu Science 2 (3 CP)	n. Researcl (6 CP)	h Project	
Docum. and Commun. Science 1 (3 CP)	RUB Soft Skills (e.g. German) (3 CP)			
	Fundamental	Advanced	Research Projec	Non Technical
Compulsory Module	Option Module	Option Module	and Master Thes	is Module

Course scheme: the size of the fields represents the allocated credit points.

ALL MODULES

FUNDAMENTAL MATERIALS PHYSICS										
Mod	Module code Student work- Credits Semester Frequency Duration									
	1	load	5 ECTS	1st		winter term		1 semester		
		150 hours								
1	Types of c	courses	Contact l	nours	Ind	lependent study	Clas	s size		
	a) lecture		a) 30 hrs	(2 SWS)	90 hours 30 students			tudents		
	b) class		b) 30 hrs	(2 SWS)						
2	Learning	outcomes								
	On succes	ssful completion o	f this module	e, students re	call t	the connections bet	ween	electronic struc-		
	ture, atomic bonds and macroscopic physical and mechanical properties of solids. The students can									
	classify materials according to their phenotypical properties and atomic structures. They can analyze							Гhey can analyze		
	simple tas	sks on material beh	avior under a	pplied electri	c, ma	agnetic, electromagi	netic,	thermal and me-		
	chanical f	fields and create so	olutions base	d on their ur	nders	standing of the rela	tions	between atomic		
	interaction	ns and macroscopi	c behavior.							
3	Subject ai	ms								
	• I:	ntroduction to qua	ntum mechai	nics and wave	e fun	ctions, many-electro	on sys	stems		
	• A	tomic orbitals, cov	alent and ion	ic bonds, elec	ctron	gas and metallic bo	onds			
	• B	and structure, con	ductors, sem	i-conductors,	insu	lators, electronic tra	anspo	rt		
	• E	lectrical and optica	l properties							
	• N	Aagnetism, electro	n spin, eleme	ntary magnet	tic m	oments				
	• S	tress and strain ter	nsors, Hooke	's law and ato	mic	interaction, mechan	nical e	equilibrium		
	• N	/letals: crystal struc	ture, strength	n, equivalent :	stres	S		-		
	• P	olymers: molecula	r structure, n	nechanical an	d ph	ysical properties				
	• (Ceramics and glass	es, including	semi-conduc	tors:	atomic structure, n	necha	nical and physi-		
	С	al properties	-					1		
4	Teaching	methods								
	lecture, in	cluding classes wi	th practical ap	oplication of t	heor	etical content				
5	Prerequis	ites for participation	n							
	None									
6	Assessme	ent methods								
	Written e	xamination (2 hour	rs). Bonus po	ints can be ga	inec	l by providing soluti	ions to	o the problem		
	sheets in	classes.								
7	Prerequis	ites for the assignr	nent of credit	points						
	Passing th	ne written examina	tion (bonus p	oints will be	take	n into account)				
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	s well				
	None									
9	Impact of	grade on total grad	de							
	5/117									
10	Responsil	bility for module								
	Prof. Dr. A	Alexander Hartmai	ier							
11	Other info	ormation								
	Moodle co	ourse with lecture i	notes and add	litional mater	ials					

THE	THERMODYNAMICS AND STATISTICAL MECHANICS										
Mod	ule code	Student	Credits	Semeste	r	Frequency		Duration			
	2	workload	4 ECTS	1st		winter term		1 semester			
_		120 hours			Ŧ	1 1 1	C 1	•			
1	Types of o	courses:	contact he	DUIS	1nc	dependent study		ss size			
	a) lecture	2	a) 50 mrs (2 SWS	/3	nours	30 8	students			
2	D) Class	outcomog	0) 13 1118 (13w3j							
2	Students	remember the basi	c laws of therm	odvnamics	the	rmodynamic potenti	ials a	nd concepts such			
	as phase of	coexistence, phase	transitions and	ransitions and phase diagrams. They combine this knowledge with the							
	variationa	l principle to cons	ruct simple models of the temporal and spatial evolution of thermody-								
	namic pro	operties of solids, e	e.g., alloys and	magnetic n	iatei	rials. Moreover, the	stude	ents apply funda-			
	mental co	oncepts of statistic	al mechanics t	o put such	basi	c models on a micr	oscoj	pic footing. They			
	discuss a	pproximations invo	olved in these 1	models and	syst	ematically propose i	impr	ovements for the			
-	individua	l steps.									
3	Subject a	ims	1	1		han an Cibba alaanaa					
		rame	nermodynami	cs, phase co	exist	tence, Gibbs phase r	uie a	na phase dia-			
	9 • F	Guistion of state of	ideal cases and	1 extension	tow	ards the van-der-W/a	ale th	eory			
	• 1	andau theory and	variational prin	icinle (Ginz	0117	rg-I andaii)	ais tii	leory			
	• 5	Statistical theory of	ideal gases lat	tice gases at	nd th	regular solution th	heory	for thermody-			
	n	namic properties of	gases and soli	d allovs	14 11	ie regular solution a	1001)	for thermouy			
	• 5	Statistical mechanic	s of stress tens	sor: The Vir	al fo	ormula					
	• \$	Statistics of quantu	m harmonic os	cillator and	spec	cific heat of solids					
	• S	pin statistics: Para	and ferromagi	netism, mea	n fie	eld approximation fo	or fer	ro-magnetism			
4	Teaching	methods									
	lecture, g	roup work									
5	Prerequis	ites for participation	on								
6	None	1 1									
6	Assessme	ent methods	urg) bonug po	inte can bo	anin	od by providing col	ution	a to the problem			
	sheets in	class	uisj, bollus po		gam	led by providing som	unon	is to the problem			
7	Prerequis	ites for the assign	nent of credit r	oints							
-	passing th	ne exam	I								
8	This mod	ule is used in the f	ollowing degre	e programs	as w	vell					
	None										
9	Impact of	grade on total gra	de								
	4/117										
10	Responsi	bility for module									
11	Prot. Dr.	Fathollah Varnik									
	Other info	ormation	ation Marlan	C Com	1. C.	otictical measures	. L	h amo a dura a cati a c			
	D R Carl	celle Introduction +	sucal Mechanic	1.8, C. Garrow	u: St nate	rials D Δ Darter \Re	AIIU Ū KF	Fasterling: Dhaco			
	transform	ation in metals an	d allovs		uale	iiais, D.A. ruiter &	к.с.	Lasicinity, rilase			
L	uansioill	iacion ni niciais di	u anoys.								

ELEMENTS OF MICROSTRUCTURE:								
AN I	NTRODU	JCTION TO MA	TERIALS	SCIENCE				
Mod	ule code	Student work-	Credits	Semester	r	Frequency		Duration
	3	load	6 ECTS	1st		winter term		1 semester
	-	180 hours						
1	Types of o	courses	Contact l	hours	Ind	ependent study	Cla	ss size
	a) lecture		a) 45 hrs	(3 SWS)	120	hours	30 s	students
	b) class		b) 15 hrs	(1 SWS)			15 s	students
2 Learning outcomes							1 . 1.	
	Students	acquire the basic c	oncepts requ	ired to under	stanc	1 microstructures of	t mai	terials, and to ap-
	preciate 1	their role in gove	rning many	important n	nater	als properties. In	ey le	earn to combine
	and physical	e from afferent if	eids (chemis	try, solid stat	e pny	vsics, crystallograph	iy, pr	iysical chemistry
	cossing a	nd heat treatments	of materials	They also lea	rn to	apply this knowled	ge to	interpret materi
	als proper	ties	of materials.	They also lea	111 10	apply this knowled	ge io	merpret materi-
	als proper	1105.						
3	Subject ai	ims						
	• E	Basics of crystallogr	aphy, waves,	scattering an	d diff	fraction		
	• (Chemical bond, elas	sticity and the	ermal expansi	ion			
	• [Defects and interfac	ces	1				
	• [Diffusion phenome	nology and p	hysics				
	• E	Basics of thermody	namics and p	hase transfor	matio	ons		
	• F	hase diagram	-					
	• S	olidification and ti	me-temperat	ure-transforn	natioi	n (TTT) diagrams		
	• F	Precipitation streng	thening					
	• (Order and disorder	transformatio	on				
	• N	Aartensite, pearlite	, bainite in st	eels				
	• S	Shape memory allo	ys					
	• E	Brittle and ductile n	naterials beha	avior				
4	Teaching	methods						
_	lecture, cl	ass						
5	Prerequis	ites for participation	n					
(None							
6	Assessme Writton of	ent methods						
7	Broroquia	ites for the assign	is). nont of crodit	nointa				
/	Passing t	he written examina	tion	points				
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	s well		
Ū.	none			ree heegen	100 u	5 11 012		
9	Impact of	grade on total grad	le					
	6/117	. . .						
10	Responsi	bility for module						
	G. Eggler	, T. Li						
11	Other inf	ormation						
	Literature	, lecture script, Mo	odle course,	etc.				

PRO	PROGRAMMING CONCEPTS IN MATERIALS SCIENCE									
Mod	lule code	Student work-	Credits	Semester	,	Frequency		Duration		
	4	load	6 ECTS	1st		winter term		1 semester		
1	Types of	180 hours	Contact	hours	Ind	lopondont study	Class	s sizo		
1	Lecture w	ith integrated prac	= 60 hrs (4)	SW/S)	120) hours	30 st	s size		
	tical hand	ls-on	00 1115 (1	5 (6)	120	110415	50 50	luuentis		
2	Learning	outcomes								
	On succes	ssful completion o	f this module	the students	recal	ll the basic concepts	of cor	mputers, operat-		
	ing syster	ms. They analyse,	write and tes	t Python lang	uage	e programs of mod	erate o	complexity. Fur-		
	thermore	, they have the abil	ity to work wi	th code editor	s an	d programming too	ls and	to program and		
	to solve b	pasic numerical pr	oblems in the	e context of o	ther	modules, in partic	ular p	roject work and		
	Master th	esis. The students	will transfer	materials sci	ence	problems into an a	bstrac	t algorithm and		
2	implemen	nt this algorithm in	ito the taught	structured p	ogra	amming language.				
5	Subject an	ims induction to princip	plag of comp	torg and ano	otin	a guatoma (Linuw)				
	• Intr	oduction to princi	orn programs	ning languag	aung	g systems (Linux)				
	 Intr 	oduction to releva	etti programi at mathemati	cal and graph	e (ry ical (software				
	• Frai	mples that will gai	n an overview	of modern n	roor	amming approache	s and t	tools will		
	com	inples that will gan		or modern p	logia	amming approache.	s and t			
	• (data interpolation a	and fitting							
	• 1	linear algebra								
	• 1	numerical integrat	ion							
	• 1	numerical solution	of ordinary a	nd partial dif	ferer	ntial equations				
4	Teaching	methods								
	Lecture w	rith integrated han	ds-on comput	er exercises v	vith 1	Python and Jupyter	noteb	ook		
5	Prerequis	ites for participation	on							
-	None	<u> </u>								
6	Assessme	ent methods								
7	Written e	ites for the assign	rs). nont of crodit	nointa						
/	Passing th	he written examina	ition	points						
8	This mod	ule is used in the f	following deg	ree programn	165.2	s well				
Ũ	none	uie is used in the i	onowing degi	ree programm	ics u					
9	Impact of	grade on total gra	de							
	6/117	0 0								
10	Responsi	bility for module								
	PD Dr. ha	abil. Thomas Ham	merschmidt,	Prof. Dr. God	ehar	rd Sutmann				
11	Other info	ormation								
	An online	repository provide	s Lecture not	es (lecture file	s and	d video material), so	urce co	ode of programs		
	which are	discussed and dev	eloped during	g the class and	l exe	rcises with solution	s. The	book "A primer		
	on scienti	tic programming v	with Python"	by Hans Pette	er La	ngtangen will be co	vered.			

NUMERICAL METHODS IN MATERIALS SCIENCE								
Module codeStudent work-CreditsSemesterFrequencyDurate						Duration		
	5	load	6 ECTS	2nd		summer term		1 semester
		180 hours						
1	Types of c	courses	Contact	hours	Inc	lependent study	Cla	ss size
	a) lecture		a) 45 hrs	(3 SWS)	120) hours	a) 3	30 students
	b) class		b) 15 hrs	(1 SWS)			b) 3	30 students
2	Learning	outcomes						
	Students	will remember the	basic principl	es of solving	num	erical problems in n	nater	ials science. They
	memorize	e the numerical sol	lution strategi	les for differe	nt pr	oblems and are able	e to a	nalyse, select and
	apply app	ropriate numerica	l strategies fo	r a wide vari	ety o	f numerical modell	ing t	asks in materials
	science, fr	com the electronic s	structure to co	ontinua. The s	stude	ents appraise the uni	fied,	holistic approach
	to materia	ls simulation which	ch is not cente	ered on or lin	nited	to a particular leng	th sca	ale. Furthermore,
	the studer	nts assess and eval	luate given nı	umerical prot	olem	s in materials scien	ce ar	nd devise and im-
	plement c	ptimal solutions.						
3	Subject ai	ms						
	Numerica	l methods are the	foundation of	f materials sin	nula	tion and necessary	for th	ne implementa-
	tion of ma	aterials theory and	its application	n to practical	prob	olems. The principle	s of 1	numerical meth-
	ods are in	dependent of leng	th scale, i.e. tl	ne solutions o	of ele	ectronic, atomistic, r	nicro	structural and
	continuur	n problems often f	follow closely	related strate	gies.	. In this course the f	ocus	is on numerical
	problems	and challenges in	materials scie	ence. Applica	tions	s to different length	scale	es are introduced
	by way of	example.						
	•	Basics: Different	iation and int	egration, vect	ors a	and tensors, product	ts and	d norms, series
		expansions						
	•	Partial differentia	al equations: I	Numerical int	tegra	ition for electrons, a	toms	s and continuum
		models		11	,	1	1.00	
	•	Variational calcu	lus: Function	al derivatives	and	derivation of partial	diffe	erential
		Optimization: Or	timization /m	oot finding of	~~~**	hma mathada far a	:	voluo problema
	•	Degragation and g	totictical anal	Dot Infung an	gorii	nins, methods for e	igen 	value problems
4	Tooching	methoda	latistical allal	ysis. Data alla	ilysis	s, error estimates, ir	IdCIII	ne learning
4	Lectures	classes						
5	Droroquis	ites for participation	n n					
5	None	nes for participation)II					
6	Assessme	ent methods						
Ŭ	Written er	xamination (2 hour	rs). Bonus po	ints can be ga	inec	l by presenting solu	tions	to the work-
	sheets in	class.	ioji zendo pe	into cuir de Be		, of presenting series		
7	Prerequis	ites for the assign	nent of credit	points				
-	Passing th	ne written examina	ition	r				
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	ıs well		
	none		0 0	1 0				
9	Impact of	grade on total gra	de					
	6/117							
10	Responsil	oility for module						
	Prof. Dr.	Ralf Drautz					<u> </u>	
11	Other info	ormation						
	Recomme	ended literature wi	ll be announc	ed in class.				

QUANTUM MECHANICS IN MATERIALS SCIENCE										
Module code Student Credits Semester Frequency Duration								Duration		
	6.1	workload	6 ECTS	2nd		summer term		1 semester		
	r	180 hours								
1	Types of o	courses:	Contact he	ours	Inc	lependent study	Clas	s size		
	a) lecture		a) 45 hrs (3 SWS)	120) hours a		0 students		
	b) class		b) 15 hrs (1 SWS)			b) 10	0-15 students		
2	Learning	outcomes	1 6 1							
	Students	are able to classify	the fundament	tals and the	appl	ication of quantum	mech	anics in materi-		
	als scienc	e. They are able to	understand tex	tbooks and	the 1	research literature in	n the f	field. They un-		
	derstand the principles of electronic structure calculations in materials science, in particular density						articular density			
	functiona	I theory, and their	limitations, an	d also gain i	nsig	ht into the numeric	al imp	plementation of		
	electronic	structure method	s. The students	can relate e	electi	ronic structure prop	erties	to the crystal		
2	structure	and other properti	es of materials.	•						
3	Subject an	ims								
	• 5	chrodinger equation	on 1							
	• •	Many-electron prob	lem							
	• •	Hartree/Hartree-Fo	CK							
	• [Density-functional	theory			1 1				
	• (Overview of basis se	ets, plane wave	s vs local or	bitals	s, pseudopotentials				
	• E	and structure, syn	imetry groups,	density of s	states	5				
	• 1	Magnetism								
	• 1	ight-binding appro	oximation	1 1.1				1 . 1		
	• 5	selected application	is for molecule	s and solids	, 1NC	luding semiconduct	tors ai	nd metals		
4	Teaching	methods								
-	lecture, cl	ass iter for nontining ti								
5	Nono	ites for participatio	n							
6	Accord	nt mathada								
U	written ev	amination (2 hour	c)							
7	Prerequis	ites for the assignt	nent of credit i	oints						
	Passing t	he written examina	tion							
8	This mod	ule is used in the f	ollowing degre	e programn	nes a	s well				
	None		0.0	1.9						
9	Impact of	grade on total grad	de							
	6/117									
10	Responsi	bility for module								
	Prof. Dr.	Ralf Drautz								
11	Other inf	ormation								
	Lecture n	otes will be provide	ed. Relevant lite	erature will	be di	iscussed in the first	lectur	re.		

MICI	MICROSTRUCTURE AND MECHANICAL PROPERTIES									
Mod	ule code	Student work-	Credits	Semester	ſ	Frequency		Duration		
	6.2	load	6 ECTS	2nd		summer term		1 semester		
		180 hours								
1	Types of o	courses	Contact	hours	Ind	lependent study	Cla	ss size		
	a) lecture		a) 45 hrs	(3 SWS)	120) hours	a) 3	30 students		
	b) class		b) 15 hrs	(1 SWS)			b) 1	15 students		
2	Learning	outcomes								
	The stude	ents memorize the	definitions o	f mechanical	equi	librium and discuss	s the	ir different math-		
	ematical f	formulations and s	solution strate	gies. They re	call t	the basics ideas of th	ie co	oncept of strength		
	for differe	ent materials. The	students discu	uss microstru	ctura	al principles of elast	ic-pl	astic deformation		
	and their	relation to atomic l	oonds and cry	stal structure	s. Th	ey describe the define	nitio	n of an equivalent		
	stress and	l apply it to solve s	imple probler	n for the defo	rma	tion of elastic-plasti	c ma	terials. They clas-		
	sify the b	asic hardening me	echanisms of	materials and	d ap	ply theoretical mode	els to	predict material		
	strength o	of different materia	als as function	n of their mic	rost	ructural parameters	. The	ey analyze simple		
	problems	in mechanics of m	naterials and s	solve the resul	lting	boundary value pro	blem	ns by using differ-		
	ent finite	element solvers.								
3	Subject ai	ms			_					
	• Def	initions and mathe	ematical form	ulations of m	echa	inical equilibrium				
	• The	ory and application	n of finite eler	ment analysis	as n	numerical tool to and	alyze	the deformation		
	of e	lastic-plastic mater	ials under giv	en boundary	cone	ditions				
	• Con	cepts of strength a	and equivalen	t stress in cor	ıtinu	um plasticity				
	• Rela	ations between ator	mic bonds and	d crystal struc	tures	s to the elastic-plastic	: beh	avior of materials		
	• Phe	nomenology and i	microscopic o	origin of hard	lenir	ıg mechanisms, inc	ludi	ng grain bounda-		
	ries	, dislocations, solic	l solutions an	d precipitatio	n ha	rdening				
	• Mic	romechanical mod	lelling of mat	erial propertie	es					
4	Teaching	methods								
-	lecture, cl	asses								
5	Prerequis	ites for participatio	on							
-	None	r r r r r r r r r r r r r r r r								
6	Assessme	ent methods								
-	Written e	xamination (2 hou	rs). Bonus po	ints can be ga	ined	l by providing soluti	ons	to the problem		
	sheets in	classes.	, 1	0		71 0		1		
7	Prerequis	ites for the assign	ment of credit	t points						
	Passing th	he written examina	ation (bonus p	oints will be	take	n into account)				
8	This mod	ule is used in the f	following deg	ree programn	nes a	s well				
	none		0 0							
9	Impact of	grade on total gra	de							
	6/117									
10	Responsi	bility for module								
	Prof. Dr. J	Alexander Hartma	ier							
11	Other info	ormation								
	Lecture n	otes are provided o	online via Moo	odle course.						
	Literature	:								
	T.H. Cou	rtney: Mechanical	behavior of m	aterials, (2nd	edit	ion) McGraw-Hill I	nteri	national Editions,		
	Boston/U	SA (2000)								
	G. Gottste	ein: Physical found	lations of mat	erials science	, Spi	ringer-Verlag (2004)			

ADV	ADVANCED CHARACTERIZATION METHODS									
Mod	ule code	Student work-	Credits	Semester	[Frequency		Duration		
	6.3	load	6 ECTS	2nd		summer term		1 semester		
	r	180 hours					1			
1	Types of c	courses	Contact l	nours	Inc	lependent study	Cla	ss size		
	a) lecture		a) 45 hrs	(3 SWS)	120) hours	a) 3	0 students		
	b) class		b) 15 hrs	(1 SWS)			b) 3	30 students		
2	Learning	outcomes								
	Students	understand the ba	sic description	c description of the structure of solids. They recall advanced crystallo-						
	graphic co	oncepts and have a	equired funda	amental know	ledg	ge of scattering and o	diffra	action of electron,		
	X-ray, syn	chrotron and neut	ron waves. T	hey know ho	w to	apply the Bragg eq	uatio	on and the Ewald		
	constructi	ion to understand o	liffraction dat	a of different	orig	ines. They will apply	/ basi	ic concepts to two		
	of the mo	ost important char	acterization t	echniques in	ma	terials science, SEN	1 an	d TEM. For both		
	methods	the mechanisms w	hich are respo	onsible for di	ttere	nt types of image co	ntra	st will be appreci-		
	ated. The	students will also	develop an a	ppreciation o	t adv	vanced in situ meth	ods.	After this course		
	the studer	its are able to fully	appreciate the	e scientific lite	eratu	ire on advanced chai	acte	rization methods.		
	They are a	able to judge the u	serumess or s	specific meth	oas	with respect to them	r pot	ential to progress		
2	Subject of	technology.								
5	Subject al	ins adjustion to smutpl	line and amo	mboug golide						
	• Inu	rn basis crystallog	anhic concon	te	,					
		ttoring and diffract	ion of particle	\mathbf{V}		unchrotron radiation	2 200	utrong and aloc		
	• SCa	(Ching and unnact		e waves (A-la	y5, 5		1, 110	utions and elec-		
	• Lea	rn basic interpretat	ion of diffrac	tion regults (nnl	ing Bragg equation	Ew	ald construction		
	• LCa	icture factor: interr	reting diffrac	ted intensitie	appi) NG PY	tra spots	, L W	aid construction,		
	• Lea	rn advanced scann	ing electron r	nicroscopy (ii	ntro	duction secondary a	nd h	ack scattered		
	elec	trons energy disp	ersive and wa	ve length disi	persi	ve chemical analysi	s ind	lexing of Kikuchi		
	line	s as a basis of orie	ntation imagi	ng SEM, in-s	itu e	xperiments in the S	EM)	aching of function		
	• Lea	rn advanced transr	nission electr	on microscor	ov (ir	ntroduction, differer	ices	between conven-		
	tion	al and advanced m	ethods – field	d emission gu	ins [FEG], high angular	dark	field detectors		
	[HA	AD]), chemical an	alysis by EDX	K and EELS, u	sing	Kikuchi lines as ma	aps f	or tilting experi-		
	men	nts, apply tilting ex	periments to	identify cryst	al de	efects [focus: disloca	tions], in-situ experi-		
	men	nts in the SEM)								
	• Lea	rn to appreciate ot	her importan	t advanced cl	iarac	cterization methods	(brie	ef introduction to		
	ator	m probe analysis at	nd high resolu	ution transmi	issio	n electron microsco	py)			
		.1 1								
4	lecture	methods								
5	Droroquis	ass, lau ites for participatic	n							
5	successful	l completion of "Fl	ements of Mi	crostructure'	, (J)	or equivalent				
6	Assessme	nt methods	cificints of Mi	leiostructure	(2)					
Ŭ	written ex	amination (2 hour	S)							
7	Prerequis	ites for the assignr	nent of credit	points						
-	passing th	ne written examina	tion	r						
8	This mod	ule is used in the f	ollowing degr	ree programn	nes a	s well				
	Master of	Science in Mecha	nical Enginee	ring: Werksto	off- a	nd Microengineerir	ıg			
9	Impact of	grade on total grad	le	0		0	0			
	6/117	0								
10	Responsil	bility for module								
	Prof. Dr	Ing. Jan Frenzel, P	rof. Dr. Tong	Li						
11	Other info	ormation	0							
	A list with	n recommended lit	erature and cl	lass notes is a	vaila	able online.				

MATERIALS INFORMATICS									
Mod	lule code	Student work-	Credits	Semester	r	Frequency		Duration	
	6.4	load	6 ECTS	2nd		summer term		1 semester	
-		180 hours	<u> </u>		.	1 1 1	C1		
1	Types of o	courses	Contact I	1000		lependent study	a) 30 students		
	a) lecture		a) 30 hrs	a) $50 \text{ mrs} (2.5 \text{ s}\text{ s}) = 1$ b) $30 \text{ hrs} (2.5 \text{ s}\text{ s}\text{ s})$) nours	a) 3	30 students	
2	D) Class	outcom og	D) 50 ms	(2 5 W 5)			U) 1	5 students	
3	After succ materials ful studer learning r materials "workflow	cessful completion science. They can a nts are able to judge method to solve a p science by implem v" in written and pr	of the modul assess quality the applicab roblem in ma entation in P resentation fo	e students ar and dimensi ility and choo aterials science ython code a orm.	e abl ions ose a ce. T nd ca	e to explain the imp of materials data an n appropriate data hey are able to solve an document, visua	pact o nd me sciene e a "d lize a	f <i>informatics</i> in etadata. Success- ce / machine ata problem" in nd present a	
	 From data to data science to materials informatics Data sources: materials data bases and how to organize data Combinatorics, probabilities, and statistics Descriptors and representations for materials: dimensions of data Machine learning Classification and regression Supervised and unsupervised learning Dimensionality reduction Clustering Deep learning and artificial neural networks End-to-end workflows: data, features, model, validation, application 								
4	Teaching lecture, as	methods ssisted tutorials in (CIP-pool						
5	Prerequis	ites for participatio	n						
	None								
6	Assessme	ent methods							
	Written e	xam (2 hours)							
7	Prerequis	ites for the assignm	nent of credit	points					
	Passing th	he module examina	tion			11			
8	This mod	ule is used in the f	ollowing degi	ree programm	nes a	is well			
0	None Immediate (1						
9	6/113	grade on total grad	le						
10	Respondi	hility for module							
10	Prof Dr	Markus Stricker							
11	Other inf	ormation							
11	Suggester	l literature:							
	Suggested literature: Materials Data Science – An Introduction to Data Mining, Machine Learning, and Data-Driven Pre- dictions for Materials Scientists; Stefan Sandfeld, Springer (2024)								

MIC	MICROSTRUCTURE EVOLUTION DURING MATERIALS PROCESSING									
Mod	lule code	Student	Credits	Semeste	r	Frequency		Duration		
	6.5	workload	6 ECTS	3rd		summer term		1 semester		
		180 hours								
1	Types of o	courses:	Contact he	ours	Inc	lependent study	Class	size		
	a) lecture		a) 30 hrs (1	2 SWS)	120) hours	a) 30	students		
	b) numer	ical exercises	b) 30 hrs (2 SWS)			b) 15	students		
2	Learning	outcomes								
	Students	can explain the un	derlying princi	ples of the f	inite	element/finite volu	me me	ethod to solve		
	problems	in continuum me	chanics includi	ng phase tra	insf	ormations. They rec	all mea	an-field models		
	and rate e	equation solutions.	With the phase	e-field meth	od tl	hey are able to solve	free bo	oundary prob-		
	lems couj	pled to a thermody	namic material	description	. Wi	th the help of these	widely	used numeri-		
	cal metho	ods in industrial an	d academic ma	iterials scier	ice tl	he students can mo	del and	l solve materi-		
-	als scienc	e problems and the	ey can describe	the limitati	ons	of these methods.				
3	Subject aims									
	• Introduction into Partial Differential Equation and Boundary Value Problems (BVP)									
	Principles of thermodynamics of multi-phase systems									
	CALPHAD thermodynamics and kinetics of multicomponent diffusion									
	Mean field models of microstructure evolution									
	Rate equations for precipitation including numerical integration									
	• (Concepts of non-eq	uilibrium phas	e transform	atio	ns				
	• I	ntroduction to free	e boundary prol	blems						
	•]	Thermodynamic co	ncept of the Ph	hase-field m	etho	d and practical appli	ication	S		
4	Teaching	methods								
	lecture, n	umerical exercises								
5	Prerequis	sites for participation	on			1:				
(Dackgrou	na in mechanical e	engineering, pr	lysics or rela	tea	discipline				
0	Assessine	amination (2 hour	a) Ronus poin	ta can bo ga	inod	by providing coluti	ong to t	the problem		
	shoots in	class	s). Donus pom	is call be ga	ineu	by providing solution		uie problem		
7	Drerequis	tes for the assign	ment of credit r	oints						
1	nassing th	ne written examina	tion (bonus po	ints will be	akei	n into account)				
8	This mod	ule is used in the f	following degre	e programn	ies a	is well				
Ũ	none	uie is used in the i	ono wing degre	e programm	105 0					
9	Impact of grade on total grade									
	6/117									
10	Responsi	bility for module								
	Prof. Dr.	Ingo Steinbach								
11	Other inf	ormation								
	Lecture n	otes are provided o	online.							

ATOMISTIC SIMULATION METHODS									
Mod	ule code	Student	Credits	Semeste	r	Frequency		Duration	
	6.6	workload	6 ECTS	3rd		winter term		1 semester	
		180 hours							
1	Types of o	courses:	Contact he	ours	Ind	lependent study	Cla	ss size	
	a) lecture		a) 45 hrs (3 SWS)	120) hours	a) 3	0 students	
	b) class		b) 15 hrs (1 SWS)			b) 1	10-15 students	
2	Learning	outcomes							
	Students	recall models for th	e interatomic	interaction a	and	can explain how the	se in	teractions can be	
	represent	ed by potentials. Th	iey are able to	apply metho	ods s	such as molecular dy	ynam	nics and kinetic	
	Monte Ca	rlo simulations to	calculate the ev	volution of t	he at	tomic structure of m	lateri	ials and the re-	
	sulting m	aterial properties.	hey can discu	ss the impo	rtano	ce of the time and le	ength	scales in atomic	
	modelling	g. The successful pa	articipants will	be able to a	pply	atomistic simulatio	on me	ethods to solve	
-	problems	in materials science	e.						
3	Subject aims								
	Empirical and semi-empirical potentials for ionic, covalent and metallic materials								
	• A	Atomic dynamics	1.1						
	 Statistics of atomic ensembles Observables in atomistic simulations (MSD_RDE_specific heat and free energy) 								
	 Observables in atomistic simulations (MSD, RDF, specific heat and free energy) Monte Carle (kinetic, Metropolic) and Transition state theory. 								
	Monte Carlo (kinetic, Metropolis) and Transition-state theory								
	• 1	attice-gas-Hamilto	nian (Ising-mo	odel, cluster	expa	ansion)			
	• N	Aagnetism (Heisen	berg-model)						
	• [inking atomistic si	mulations to t	he electronic	c, m	icrostructural and m	lacro	scopic models	
4	Teaching	methods							
-	lecture, cl	ass, problem sheet	S						
5	Prerequis	ites for participation	n Mach	nica in Mat		la Caion co"/Madula	(1) :	a recommended	
6	Accessio	nt methoda			ena	is science (module	0.1)1	is recommended	
0	writton ov	amination (2 hour	s) Bonus poin	te can be ga	inod	by providing soluti	one t	o the problem	
	sheets in	class	sj. Bollus polli	is call be ga	meu	by providing solution	0115 0	o the problem	
7	Prerequis	ites for the assignm	nent of credit i	oints					
	passing th	ne written examina	tion (bonus po	ints will be	takeı	n into account)			
8	This mod	ule is used in the f	ollowing degre	e programn	nes a	is well			
_	none		8 8	1.9					
9	Impact of grade on total grade								
	6/117	- 0							
10	Responsi	bility for module							
	Prof. Dr.	Ralf Drautz							
11	Other info	ormation							
	Lecture n	otes will be provide	d. Relevant lite	erature will	be di	iscussed in the first	lectu	ire.	

ADVANCED PROGRAMMING FOR MATERIALS SCIENCE									
Mod	lule code	Student work-	Credits	Semester	r	Frequency		Duration	
	6.7	load	6 ECTS	2nd		winter term		1 semester	
		180 hours			-	1 1 1	C1		
1	Types of c	courses	Contact	hours		lependent study	Cla	ss size	
	a) lecture		a) 30 hrs	(2 SWS)	120) nours	a) 3	50 students	
2	D) Class	outcom or	b) 30 mrs	(2 5 W 5)			U) 1	15 students	
Z	The stude	outcomes	dwanced pro	aromming to	hni	ning that are relevan	at for	materials sci	
	ence The	w can classify diffe	rent program	ming languag		nd are able to gener	n iui ate c	omputer code	
	for compi	led languages to so	lve basic mat	thematical an	d nh	vsical problems. Th	ev 119	se tools that facil-	
	itate code	development and	employ best r	programming	ora	ctices. The students	appl	v these concepts	
	to create a	dvanced algorithm	is that solve of	omplex probl	ems	in materials science	e.	y allose colleepts	
3	Subject ai	ims							
	• Con	npiled languages (I	Fortran, C)						
	• Object-oriented programming (python, C++)								
	• Para	allel programming	C III	,					
	• Bes	t practices (testing,	documentati	ion, version c	ontro	ol)			
	Advanced algorithms								
	 Variational basis set methods for PDEs 								
	0	Stochastic Monte	-Carlo metho	ds					
	0	Time-propagatior	1						
4	Teaching	methods							
	lecture, as	ssisted tutorials in	CIP-pool, mi	ni-project					
5	Prerequis	ites for participation	n						
	None								
6	Assessme	ent methods							
	Portfolio	exam including mi	ni-project, se	minar, and re	eport				
7	Prerequis	ites for the assignr	nent of credit	t points					
	Passing th	ne module examina	ation			11			
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	is well			
0	Inone Impost of	Canada an tatal ana	4.0						
9	6/117	grade on total grad	le						
10	Responsil	bility for module							
10	Prof. Dr	Miguel Marques							
11	Other info	ormation							
	-								
	1								

FUNCTIONAL MATERIALS: PROPERTIES AND MODELLING									
Mod	ule code	Student	Credits	Semester	t	Frequency		Duration	
	6.8	workload	6 ECTS	3rd		winter term		1 semester	
		180 hours							
1	Types of o	courses	Contact l	hours	Ind	lependent study	Cla	ss size	
	a) lecture		a) 45 hrs	(3 SWS)	120) hours	a) 3	0 students	
	b) class		b) 15 hrs	(1 SWS)			b) 1	5 students	
2	Learning	outcomes							
	After part	icipation in this m	odule, studen	its memorize	the	discussed functiona	l pro	perties of materi-	
	als. They	recall and understa	ind the under	lying physica	l cor	cepts. Furthermore	, the	y can outline the	
	challenge	s for materials scie	nce, and sug	gest proper si	mula	ation methods to ad	dress	s these on the	
	relevant s	cales. They are able	e to analyse, c	compare and a	apply	y these concepts and	l met	hods to current	
	problems	in materials science	ce.	1					
3	Subject ai	ms							
	This course focuses on functional materials, their relevance for application, and the interplay of								
	electronic, atomistic, microstructural and functional properties. The objectives are the fundamental								
	understanding of functional responses and their degeneration through functional fatigue as well as								
	routes to optimize functional properties.								
	The main focus is on materials for energy conversion and storage, e.g.								
	Battery materials								
	•	Materials for capa	citors						
	Permanent magnets								
	Materials for solar cells								
	•	Magnetic, ferroele	ctric. multife	rroic phases a	ınd r	phase transitions			
	•	Superconducting	materials	F	1				
	In additio	n to physical conce	epts, the lectu	re focuses on	the	modelling of the ma	ateria	al properties	
	across the	relevant scales. W	e will discuss	s. compare an	d ap	ply simulations usi	ng e.g	л. Г. Г Г	
	• \$	pin models		, <u>-</u>	F	F-7 ~	-00	5.	
	• T	Pensity functional t	heory						
	• 1	Aolecular Dynamic	s						
	• 1	andau theory							
4	Teaching	methods							
1	lecture cl	255							
5	Prerequis	ites for participatic	n						
5	Basic kno	wledge on quantu	n mechanics	/ solid state r	hvsi	ics is of advantage			
6	Assessme	nt methods	ii iiiceiluilles		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	les is of advantage			
Ŭ	Written e	xam (2 hours): if le	ss than 10 sti	idents: oral e	vam	(20 minutes)			
7	Prerequis	ites for the assign	nent of credit	noints	Autti	Zommates			
1	Passed ex	res for the assign	field of cicult	points					
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	s well			
Ŭ	-	ule is used in the i	onowing degi	ice programm	105 u				
9	Impact of	grade on total grad	le						
1	6/117	grade on total grad	ac .						
10	Responsil	pility for module							
1	Prof Dr	Anna Grünebohm							
11	Other info	ormation							
	Lecture n	otes will be provide	h						
	Lecture II	ores will be provide							

INTERFACES AND SURFACES									
Mod	ule code	Student	Credits	Semeste	r	Frequency		Duration	
	7.1	workload	6 ECTS	2nd		summer term		1 semester	
		180 hours							
1	Types of o	courses:	Contact he	ours	Ind	lependent study	Cla	ss size	
	a) lecture		a) 45 hrs (3 SWS)	120) hours	a) 2	0 students	
	b) class		b) 15 hrs (1 SWS)			b) 1	l0 students	
2	Learning	outcomes	<u> </u>						
	Students	will understand th	e relevance of s	surfaces and	inte	rfaces in materials s	scien	ce and gain	
	basic kno	wledge of experime	ental and comp	outational te	chni	ques to characterize	e thei	m. They under-	
	stand the	relationship betwe	en atomistic de	escriptions o	of int	terfaces/surfaces an	d ma	croscopic mate-	
	rials prop	erties, especially th	ermodynamic	nodynamic and mechanical properties. They will develop the skills to					
	read and	understand the rel	evant literature	, to choose t	he n	nost suited experime	ental	or modelling	
	approache	es for specific tasks	s and to applyth	nem to mate	rial s	science problems.			
3	Subject ai	ms							
	• I:	ntroduction to sur	faces and inter	faces for opt	ical,	electronic, magneti	c and	l mechanical	
	p	properties and their	importance fo	or materials	desią	gn including metals	, sen	niconductor, ox-	
	ie	des							
	• P	Principles of interfa	ce/surface crys	stallography	and	indexing geometrie	es in	atomistic mod-	
	e	ls. Introducing cla	ssification and	nomenclatu	re o	f surfaces and grain	bou	ndaries	
	• N	Aechanisms and in	nportance of su	ırface relaxa	tion	/reconstruction and	opti	mization of	
	S	olid-solid interface	degrees of free	edom					
	• E	Empirical and there	nodynamic mo	dels of inter	face	/surface properties,	for]	oure inter-	
	fa	aces/surfaces as w	ell as for intera	ctions with a	adso	rbates, vacancies, in	npur	ities, and disloca-	
	tions								
	• Experimental characterization of interface/surface structures (diffraction, scanning, micros-								
	С	opy, spectroscopy	methods), plan	ning specifi	c exp	periments and relate	e exp	erimental and	
	t	heoretical results							
	• N	Aethods for compu	tational detern	nination of a	tom	istic interface/surfa	ce st	ructures and	
	p	roperties. Possibil	ities and limita	tions of ator	nisti	c models			
4	Teaching	methods							
-	lecture, co	iter Commentiation							
5	booleanous	ites for participation	n nistra or relate	d diaciplina					
6	Aggaggma	na mathada	filstry of relate	a aiscipiine					
0	Assessine	hours) or oral ova	mination (0.5 k	ourg) donor	dine	a on size of the class		nus points con	
	be gained	by complementar	v tasks distribu	ted in the le	cture		s. do	nus points can	
7	Drerequis	ites for the assign	nent of credit i	noints	ctur				
·	nassing th	ne evamination (bo	nus points will	be taken in	to ac	count)			
8	This mod	ule is used in the f	ollowing degre	e programn		s well			
0	none	uic is used in the i	onowing degre	c programm	ics a	is well			
9	Impact of	orade on total gra	de						
,	6/117								
10	Responsi	pility for module							
	PD Dr. ha	ibil. Thomas Ham	merschmidt. P	D Dr. habil.	Reb	ecca Ianisch			
11	Other information								
	Lecture n	otes will be provide	ed.						
	Recomme	ended Literature:							
	I. M. Howe: Interfaces in mat		aterials, Wiley Interscience (1997);						
	A. Gross:	Theoretical surfac	e science: A microscopic perspective, Springer (2009).						

DATA-DRIVEN MATERIALS SCIENCE – HANDS ON									
Mod	ule code	Student	Credits	Semeste	er	Frequency		Duration	
	7.2	workload	6 ECTS	2nd		summer term		1 semester	
		180 hours							
1	Types of c	courses:	Contact he	ours	Ind	lependent study	Cla	ss size	
	a) lectures	3	a) 30 hrs (2 SWS)	120) hours	a) 2	0 students	
	b) hands-	on practical studie	s b) 30 hrs (2 SWS)			b) 2	20 students	
2	Learning	outcomes		,			. ,		
	After part	icipating in the mo	odule students						
	1	1 0							
	• R	Remember the basi	c concepts of d	ata-driven n	nate	rial science			
	• a	pply common data	-driven metho	ds of superv	ised	and unsupervised l	earni	ng, deep learn-	
	iı	ng to describe and	analyze given o	data sets					
	• d	iscuss limitations	and applicabili	ty of these n	neth	ods in the context of	f mat	erials science	
	а	nd select the prope	er methods for	particular a	pplic	ations.			
	• c	reate Python code	to implement a	and apply th	ese 1	methods to simple p	oroble	ems	
	• a	pply the methods	to organize and	l manipulate	e dat	a efficiently			
3	Subject ai	ms							
	• [Data manipulation	with Python						
	• [Data visualization a	nd reporting						
	• S	upervised learning	g: regression ar	nd classificat	tion				
	• T	Jnsupervised learn	ing: clustering	, dimension	ality	reduction			
	Deep learning								
	 Data storage and organization, databases of relevance in materials science 								
	• [Design and manage	ement of datab	ases	10.41				
4	Teaching	methods							
-	hands-on	lectures and mini	project						
5	Prerequis	ites for participation	n						
	Completie	on of the modules	"Programming	g Concepts i	n Ma	aterials Science" and	d "Ma	aterials Infor-	
	matics" is	recommended							
6	Assessme	ent methods							
	Completio	on of mini project	with written pr	oject report					
7	Prerequis	ites for the assign	nent of credit I	points					
	Accepted	project report	-						
8	This mod	ule is used in the f	ollowing degre	e programn	nes a	s well			
	none		0 0						
9	Impact or	n total grade							
	6/117	C C							
10	Responsil	bility for module							
	Prof. Dr. 1	Drautz, Dr. Yury L	ysogorskiy						
11	Other info	ormation							
	Literature:								
	Literature	:							
	W. McKir	nney: Python for D	ata Analysis: D	ata Wrangli	ng w	rith pandas, NumPy	, and	Jupyter, O'Reilly	
	(2022);			0	0				
	J. Vander	Plas: Python Data	Science Handb	ook: Essent	ial T	ools for Working wi	th Da	ata, O'Reilly	
	(2016);	*				5		,	
	J. Grus:Da	ata Science from S	cratch: First Pr	inciples wit	les with Python, O'Reilly (2015).				

INTRODUCTION TO PARALLEL- & SCIENTIFIC-COMPUTING									
Mod	ule code	Student	Credits	Semeste	r	Frequency		Duration	
	7.3	workload	6 ECTS	2nd		summer term		1 semester	
		180 hours							
1	Types of o	courses:	Contact he	ours	Ind	lependent study	Clas	ss size	
	a) lectures	5	a) 30 hrs (2	2 SWS)	120) hours	20 s	students	
	b) exercis	es	b) 30 hrs (2 SWS)					
2	Learning	outcomes							
	After suce	cessful completion o	f the module	the students	s hav	ve gained knowledge	e abo	ut parallel pro-	
	grammin	g concepts. They car	i translate a s	erial algorith	ım i	nto its parallel versi	on ar	nd can apply par-	
	allel conc	epts to applications	of scientific co	omputing. T	he s	tudents have learne	d and	d applied the	
	main imp	ortant data commu	nication conce	epts in share	ed m	emory and distribut	ted m	nemory pro-	
	grammin	g via OpenMP and M	API. The stud	lents will ha	ve ga	ained practical prog	ramn	ning experience	
	with specific problem oriented examples which support the experience in applying parallel compu-								
	ting methods. The students have worked on different numerical applications for which parallel algo-								
	nthins are introduced, compared and assessed. They have learned now to analyze the potential of a social program for its parallelization. The students will gain practical experience with numerical								
	serial pro	gram for its parallell	zation. The s	ludents will	gain od b	i practical experienc	e wit	il numerical	
	report	ili computational pro	Jects that wh	ii be present	eu D	y the students in sir	UIT LA	iiks allu a liilai	
3	Subject a	me							
5	Parallel communication libraries MPI and OpenMP								
	 Parallel algorithms for particle methods, linear algebra 								
	• F	erformance evaluat	on	unous, inica	aig	CDIa			
	• 1	Jumerical optimisat	on						
	• 4	Application of nume	rical libraries						
4	Teaching	methods	icui iibiuiico						
-	lecture, cl	ass-room exercises,	project work						
5	Prerequis	ites for participation							
	basic kno	wledge in a higher p	rogramming	language					
6	Assessme	ent methods		0 0					
	project we	ork on a given topic	of scientific c	omputing T	rans	lation of a problem	into a	an OpenP or	
	MPI versi	on. Seminar talk an	d written repo	ort on the pr	ojec	t topic			
7	Prerequis	ites for the assignm	ent of credit p	points					
	submissio	on of report and pres	sentation of p	roject work					
8	This mod	ule is used in the fo	lowing degre	e programn	ies a	is well			
	none								
9	Impact of grade on total grade								
	6/117								
10	Responsi	bility for module							
	Prot. Dr.	Godehard Sutmann							
11	Other inf	ormation	1 .	4		1 • 1 • • •		1 C	
	An online	e repository provides	es lecture notes (lecture files and video material), source code of pro-						
	grams discussed and developed during the class, and exercises with solutions.								

PHYSICS OF COMPLEX PHASE TRANSITIONS IN SOLIDS									
Mod	ule code	Student	Credits	Semester	ſ	Frequency		Duration	
	7.4	workload	6 ECTS	2nd		summer term		1 semester	
		180 hours							
1	Types of o	courses	Contact l	hours	Ind	lependent study	Cla	ss size	
	a) lecture		a) 30 hrs	(2 SWS)	120 hours20 students				
	b) semina	ır	b) 30 hrs	(2 SWS)					
2	Learning	outcomes							
	After part	icipation in this m	odule, studen	its are able to	char	acterize and classify	7 pha	se transitions in	
	solid state	e materials. For the	discussed ex	amples (e.g. s	supe	rconducting and fer	roic	phases) they	
	know the	underlying physica	al concepts ar	id scale-bridg	ing 1	methods to address	these	2.	
	They are able to judge, compare and utilize these concepts and methods.								
3	Subject aims								
	• Introduction to complex phase transitions in solid state materials								
	(e.g. magnetic, ferroelectric and superconducting phases)								
	• Clas	ssification of phase	transitions a	nd critical ph	enor	nena			
	(e.g	order of phase tra	nsitions, criti	cal exponents	s, ais	placive transitions)			
	Models and simulation methods								
	(e.g	. spin models, Lan	dau theory, m	iolecular dyna	amic	s simulations)			
4	leaching	methods							
5	Droroquio	itaa far participatio							
2	basic kno	wledge on quantur	n mechanica	/ solid state r	hvei	cs and thermodyna	mice	/ statistical	
	physics	wieuge on quantui	ii iiieciiaiiies	/ solid state p	/11y51	cs and mermouyna	mes		
6		ont methods							
Ŭ	Written a	nd oral presentatio	n of project w	vork and shor	t ora	l examination relate	ot be	project	
7	Prerequis	ites for the assignment	nent of credit	points				F)	
	taking pa	rt in the seminar /	project work	1					
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	s well			
	Physics		0 0	1 0					
9	Impact of	grade on total grad	de						
	6/117								
10	Responsi	bility for module							
	Prof. Dr.	Anna Grünebohm	, Prof. Dr. Mi	chael Scherer	1				
11	Other inf	ormation							
	Lecture notes will be provided.								

THE	THE CALPHAD METHOD IN THERMODYNAMICS AND DIFFUSION								
Mod	ule code	Student		Credits	Semeste	r	Frequency		Duration
	7.5	workload		6 ECTS	2nd		summer term		1 semester
		180 hours							
1	Types of o	courses:		Contact he	ours	Ind	lependent study	Cla	ss size
	a) lecture			a) 45 hrs (3 SWS)	120) hours	15 s	students
	b) class			b) 15 hrs (1 SWS)				
2	Learning	outcomes							
	Students	understand the co	nce	pt of phase	equilibrium	, lea	rn how to model Gi	bbs e	energy and its de-
	rivatives u	using fundamental	th	eories and tl	ne connectio	n to	experimental deter	mine	ed thermody-
	namic pro	operties. They learn	n to	handle the	rmodynami	c and	d diffusion database	s. Af	ter a successful
	participat	ion of the course s	tud	ents know t	he mathema	atica	l models of diffusio	n ano	d numerical
	methods	as well as diffusion	ı pı	ocesses. Th	ey will be ab	le to	o understand physic	al rel	ationships in the
	diffusion	process and the co	nn	ection to the	e thermodyr	ami	c properties. They le	earn	to select a suita-
	ble model	according to a req	lnii	ement profi	ile and are a	ble t	o carry out simple r	nater	ial-specific simu-
	lations of	diffusion processe	es in	n materials.					
3	Subject ai	ms							
	• 1	hermodynamic fu	nct	ions and cal	lculation of	phas	e diagrams.		
	Constructions of the CALPHAD-type computational thermodynamic databases after critical								
	evaluation of experimental information as well first- principles calculated data.								
	 Microstructure simulations using thermodynamic quantities 								
	• N	Aathematical basic	s o	f the diffusion	on equation	diff	fusivity, mobility coe	efficie	ents
	 Diffusion as a coupling of mobility and thermodynamics 								
	Multicomponent Diffusion								
	• I:	ntroduction to DIC	CTF	RA					
	• N	Aobility databases							
4	Teaching	methods							
	lecture, ex	ercises, individual	l pr	oject, case s	tudies, discu	issic	ons, presentation of	mod	eling results
5	Prerequis	ites for participation	on						
	basic kno	wledge in thermod	lyn	amics and s	tatistical phy	vsics	, basic knowledge (of str	ucture and prop-
	erties of n	naterials, ordinary	dif	ferential equ	lations.				
6	Assessme	ent methods							
	written re	port (10 to 15 page	es) (of individua	l project				
7	Prerequis	ites for the assign	me	nt of credit _I	points				
	positively	evaluated written	rep	ort					
8	This mod	ule is used in the f	foll	owing degre	e programn	ies a	is well		
	none								
9	Impact of	grade on total gra	de						
	6/117								
10	Responsi	bility for module	_						
	Prot. Dr.	Ingo Steinbach, Di	r. Jı	ulia Kundin					
11	Other info	ormation							
	Literature						1		.1 1 7
	H.L. Luka	is, S.G. Fries, B. Si	inc	Iman: Comp	outational th	erm	odynamics, the Cal	phad	method, Cam-
	bridge Ur	iversity Press (200)/).		-1.1.171	1		1.1	
	A. Paul, I	. Laurila, V. Vuori	ner	1, S.V. Divin	iski: Thermo	odyn	amics, Diffusion an	d the	e Kirkendall Ef-
	fect in Solids, Springer, Cham, (2014).								

FUNDAMENTAL ASPECTS OF MATERIALS SCIENCE AND ENGINEERING									
(FAN	ISE)								
Mod	ule code	Student	Credits	Semeste	er	Frequency		Duration	
	7.6	workload	6 ECTS	2nd		summer term		1 semester	
		180 hours							
1	Types of o	courses:	Contact ho	ours	Ind	ependent study	Cla	ss size	
	a) lecture		a) 45 hrs (3	3 SWS)	120	hours	a) 1	10 students	
	b) class		b) 15 hrs (1 SWS)			b) 1	0 students	
2	Learning	outcomes							
	Students	will be able to appl	y elements from	m the mater	rials s	science curriculum	to ac	tual engineering	
	problems	in advanced mater	rials technology	7. They are a	ware	of the strong link l	betwo	een elementary	
	atomistic,	crystallographic, t	hermodynamic	c/kinetic and	d mic	crostructural proces	ses a	nd the behav-	
	iour of m	aterials/componen	ts on the macro	o scale. The	y will	be able to use the	unde	rstanding of	
	basic proc	cesses to develop n	ew and improv	e classical n	nateri	ials, to assess the m	iecha	inical and func-	
	tional pro	perties of material	s and to unders	stand kinetio	c proo	cesses in solids and	l at s	urfaces. In addi-	
	tion to an	increased familiar	ity with advanc	ed basic cor	ncept	s, the students will	be al	ble to apply ma-	
	terials sci	ence theory to four	fascinating ma	aterial classe	es: H	igh entropy alloys,	inter	metallic phases,	
-	single crystal NI-base superalloys and snape memory alloys.								
3	Subject an	ms	1 1 .			1.1 .			
	• 1:	mportance of atom	is and electrons	s in materia.	ls eng	gineering and the t	ransı	tion from atoms	
	te	o alloys and from a	lloys to compo	nents		10 1 1	c	11 1 • / •.1	
	• 1	nermodynamic co	ncepts in mate	rials engine	ering	g and fundamentals	s of a	lloy design (with	
	a	special focus on te	ernary phase di	agrams)		• / • 11		. ,	
	• Kinetic concepts in materials science and engineering (especially precipitation processes)								
		asic concepts of so	nia state phase	transforma	tions		. 1		
	• (nderstanding and	application of	knowledge	to 101	ar materials classes	: n1g	n entropy alloys,	
	11	ntermetanic phases	s, single crystal	superanoys	ana	snape memory and	oys	mallarra)	
	• <i>P</i>	cquisition of know	ledge about fin	gn tempera	ture s	strengtn (example:	supe	ralloys)	
4	Teaching	methods	ledge about frac	lure mechar	lics a	nd laugue (example	. sna	be memory alloys)	
4	lecture cl	neurous							
5	Prerequis	ites for participatic	m						
,	successfu	l completion of "Fl	ements of Mic	rostructure"	' (2a)	and "Statistical Me	char	uics and Funda-	
	mental M	aterials Physics" (2	c) recommend	led	(24)	und Statistical me	ciiui	iles ulla i ullau	
6	Assessme	ent methods							
	oral exam	ination (0.5 hours)							
7	Prerequis	ites for the assignment	nent of credit r	ooints					
	passing th	ne exam	- -						
8	This mod	ule is used in the f	ollowing degre	e programn	nes as	s well			
	Master of Science in Mechanical Engineering: Werkstoff- und Microengineering								
9	Impact of	grade on total grad	de	0					
	6/117	- 0							
10	Responsi	bility for module							
	Prof. Dr	Ing. Gunther Egge	ler						
11	Other info	ormation							
	A list with recommended literature and class notes will be available online.								

POLYMERS AND SHAPE MEMORY ALLOYS									
Mod	lule code	Student	Credits	Semeste	r	Frequency		Duration	
	7.7	workload	6 ECTS	2nd		summer term		1 semester	
		180 hours							
1	Types of o	courses:	Contact ho	ours	Ind	lependent study	Cla	ss size	
	a) lecture		a) 45 hrs (3	(3 SWS) 120) hours	a) 1	0 students	
	b) class		b) 15 hrs (1 SWS)			b) 1	10 students	
2	Learning	outcomes							
	Students	will be familiar wit	h the morphol	ogy/microst	ructi	ure of polymers and	l sha	pe memory al-	
	loys and l	cnow how to proces	ss these materi	als. They wi	ll un	derstand the basic r	mech	anical and func-	
	tional pro	perties of these two	o materials clas	sses with a s	pecia	al focus on enginee	ring	applications and	
	be familia	ar with scale bridgi	ng concepts, i.e	e. they can d	1SCUS	ss macroscopic prop	pertie	es in view of at-	
	omistic ir	iteractions and mo	rphological/mi	crostructura	li tea	itures. Most importa	antiy	, they will under-	
2	Stand the	relation between n	norphology/mi	crostructure	and	i mechanical and fu	nctic	mai properties.	
5		uns Processing and mo	mbology of pol	umore					
		Therestorization of	polymore	ymers					
		hysical and therm	polymers	cts of polym	or m	nterials science			
	 Mechanical and functional properties of polymers and engineering applications 								
	• 1	ntroduction of the	shape memory	effects in c	weta	lline materials	prica	10115	
	• 1	Thereacterization of	shape memory	allovs	ysta				
	• •	ole of the martens	itic transforma	tion in shar	e m	emory technology			
	• 1	Aechanical and fur	ictional propert	ties of shape	me	mory alloys			
4	Teaching	methods		r -					
	lecture, cl	ass							
5	Prerequis	ites for participation	n						
	successfu	l completion of "El	ements of Mic	rostructure"	(2a)	or equivalent recor	nme	nded	
6	Assessme	ent methods							
	written ex	amination (2 hour	s)						
7	Prerequis	ites for the assignr	nent of credit p	points					
	passing th	ne written examina	tion						
8	This mod	ule is used in the f	ollowing degre	e programn	ies a	s well			
	Master of	Science in Mechai	nical Engineeri	ng: Werksto	ff-E1	ngineering			
9	Impact of	grade on total grad	de						
	6/117								
10	Responsi	Dility for module	Ing Ice From						
11	Dr. Kiaus	Neuking, Prof. Dr	ing. Jan Fren	zei					
11	Lecture n	otes will be provide	d						
	Lecture notes will be provided.								

COM	COMPUTATIONAL PLASTICITY									
Mod	ule code	Student	Credits	Semester		Frequency		Duration		
	7.8	workload	6 ECTS	2nd		summer term		1 semester		
		180 hours								
1	Types of o	courses	Contact l	nours	Ind	lependent study	Clas	ss size		
	lecture an	id class	60 hrs (4	SWS)	120) hours	no i	restrictions		
2	Learning	outcomes		مرور مرور مرور		ماليالية بالمكرية بالمراد	c 1:00	and the second		
	After succ	essiully completing	g the module	, the students	fied	They understand t	l allie ho nh	erent types of		
	and mech	anisms of elastic a	nd plastic bel	avior of cryst	allir	e materials and car	no pi nontl	ine the different		
	types of p	lasticity models in	solid mechan	ics. Furtherm	lore	, they can explain th	e bas	sic concepts and		
	the mathe	ematical formulation	on of continu	um plasticity a	and	crystal plasticity. Th	ey di	scuss the basic		
	concepts	of the numerical in	nplementatio	n of plasticity	mo	dels and identify the	e met	hod which is		
	most suit	ed to solve a given	mechanical p	roblem. Stude	ents	can implement and	l app	ly a numerical		
	scheme fo	or the solution of e	lasto-plastic p	roblems with	in th	ne finite element me	ethod	•		
3	Subject ai	ms	1.	1		1 .				
		Sasics of continuum	n mechanics	and Finite Ele	mer	nt Analysis				
	• •	nenomenology an	d atomistic of	uiold critori	anc	l plastic deformation	n nd bi	nomatic hardon		
	• (2011Cepts of Continu	ium plasticity	(yield chiello)11, 1	iow rule, isotropic a	nu ki	inematic naruen-		
	• •	118) Rate dependent and	l rate-indepen	dent formula	tion	s of continuum play	sticity	7		
	• 1	Sumerical solution	schemes for	elasto-plastici	tv (o	perator split, return	mar	pping, consistent		
	ta	angent modulus)		F	-) (-	F	r	· · · · · · · · · · · · · · · · · · ·		
	• (Computational aspe	ects of small a	ind large strai	n fo	rmulations				
	• (Concepts of crystal	plasticity (dis	location slip, i	low	rule, hardening mo	dels,	consistent tan-		
	g	ent modulus)								
	• \$	structure, impleme	ntation and a	pplication of a	an A	baqus UMAT				
4	Teaching	methods			1					
F	lecture, h	ands-on classes, m	ini project ind	cl. seminar tal	k, as	ssignments				
5	none	nes for participatio	011							
6	Assessme	ent methods								
	Portfolio	exam including rep	orts on assig	nments, semi	nar	and self-evaluation	repoi	rt		
7	Prerequis	ites for the assignr	nent of credit	points						
	passed fir	nal module examin	ation							
8	This mod	ule is used in the f	ollowing deg	ree programm	ies a	is well				
	Master of	Science Computat	tional Engine	ering, Master	of S	cience Maschinenb	au			
9	Impact of	grade on total grad	de							
10	0/11/ Bognon-:1	hility for modul-								
10	Prof Dr	Alexander Hartma	ier							
11	Other inf	ormation	101							
	Lecture n	otes will be provide	ed.							

ENGINEERING CERAMICS & COATING TECHNOLOGY									
Mod	ule code	Student	Credits	Semeste	er	Frequency		Duration	
	7.9	workload	6 ECTS	2nd		summer term		1 semester	
		180 hours							
1	Types of o	courses:	Contact he	ours	Ind	lependent study	Cla	ss size	
	a) lecture		a) 30 hrs (2 SWS)	135	5 hours a)		a) 10 students	
	b) class		b) 30 hrs (2 SWS)			b) 1	10 students	
2	Learning	outcomes							
	The stude	ents obtain a profo	und knowledge	of engineer	ring	ceramics and their t	techr	ical applications.	
	By examp	les, they learn and	understand th	e major pro	cessi	ing steps in manufa	cturi	ng engineering	
	ceramics	and in manufactur	ring routes for	fibre-reinfor	ced	ceramic matrix com	iposi	tes. They become	
	familiar w	vith the typical the	rmo-mechanica	l and functi	ional	properties of ceran	nics.	This knowledge	
	enables th	ne students to selec	ct ceramics for	specific nee	ds.				
	In additio	n, the students gai	in basic knowle	dge on coat	ing t	echnologies for thic	k lay	ers of ceramic	
	materials,	, including therma	l spray and sin	tering techn	olog	ies, which enables t	he st	udents to select	
	suitable c	oating methods for	r wear, corrosic	on, function	al an	d high temperature	appl	ications.	
3	Subject ai	ms	1			c .			
	• P	owder synthesis &	conditioning,	shaping, sir	iterii	ng of ceramic mater	ials		
	• (characterisation of	ceramics with	different me	etho	ds			
	• P	Properties and appl	lications of eng	ineering cer	ami	cs			
	• E	Basic knowledge or	different thick	t film depos	ition	technologies (them	nal s	pray processes	
	а	nd sintering techn	iques)						
	• [Demonstration how	v coatings can i	mprove the	func	ctionality of compor	nents		
4	Teaching	methods							
5	Proroquia	itog for participati	~~~						
2	knowledg	e in materials pror	n Derties is recorr	mended					
6	Assessme	ent methods	Jerties is recom	inicilaca.					
Ŭ	written re	port on assignmer	nt (weight for fi	nal grade [.] 3	0%)·				
	oral exam	ination (20 minute	es) or written e	ramination	(90 r	ninutes) (weight for	fina	l grade: 70%)	
7	Prerequis	ites for the assign	ment of credit i	oints	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			i gradot / d / d /	
	passing th	ne exam							
8	This mod	ule is used in the f	following degre	e programn	nes a	is well			
	Master of	Science in Mecha	nical Engineeri	ng: Werksto	off-E	ngineering			
9	Impact of	grade on total gra	de						
	6/117								
10	Responsi	bility for module							
	Prof. Dr.	Robert Vaßen							
11	Other info	ormation							
	Literature	:	.						
	Ceramic l	Materials, Science	and Engineerir	ıg, C. Barry	Cart	er, M. Grant Nortor	ı, Spi	ringer 2013;	
	Handboo	k of Properties of	l'echnical & En	gineering C	eran	nics, R. Morrell, HM	ISO :	1989;	
	Ceramics	, D. Munz, T. Fett,	Springer, 1999); 1. · 1	1 ~			7 TT . 1 .	
	The Mech	anics and Reliabil	ity of Films, M	ultilayers an	d Co	oatings, M.R. Begley	7, J.W	. Hutchinson,	
	Cambridg	ge University Press	s, 2017;	w/:1 2000					
	Plasma S	pray Coating, Robe	ert B. Heiman,	wiley, 2008	•				
	Slides wil	i de available onlin	ie.						

THE	ORY OF	ELECTRONIC	EXCITATI	ONS IN M	\TE	RIALS		
Mod	ule code	Student	Credits	Semester		Frequency		Duration
	7.10	workload	6 ECTS	2nd		summer term		1 semester
		180 hours						
1	Types of o	courses	Contact	hours	Ind	lependent study	Cla	ss size
	a) lecture		a) 30 hrs	(2 SWS	120) hours	20 s	students
	b) hands-	on	b) 30 hrs	; (2 SWS)				
2	Learning	outcomes	_					
	Electronic	c Structure Theory	is a successfu	ıl and growin	g are	ea of materials scien	ce, ta	aking advantage
	of the inc	reasing availability	of high perfo	ormance com	outer	rs. Starting only from	n the	e knowledge of
	the types	of atoms that make	e up the syste	m (molecule,	crys	tal, nanostructure, .), st	udents will learn
	how to ac	curately calculate t	he response j	properties of r	nate	rials without any fu	rther	experimental
	input, i.e.	using only the fur	idamental lav	vs of electrody	man	nics and quantum p	hysic	s. Students get
	familiar w	vith state-of-the-art	theoretical a	nd computation	onal	approaches to elect	conic	excitations and
	theoretica	a spectroscopy (dei	Isity function	lai theory, tim	e-ae	pendent density fur	1CT101	hal theory,
	Green's n	unction methods).	In practical c	lasses, studer	ts ga	ain nands-on experi	ence	in the use of
	various so	onware packages ic	of electronic s	aructure sinit		they leave here to co	na si	ate. In the final
	and analy	ey undertake a sind	numerical re	i project ili wi	IICII	they learn now to ca	III y O	out simulations
3	Subject a	ime	inumericarie	suits.				
5	Four	indations of theory	for interactir	ng electrons. r	near	fields and auviliars	evet	ems narticles
	and	auasinarticles fur	ictionals in m	ig ciccuoiis. I ianv-narticle i	hvsi	ics	syst	cills, particies
	• Flee	tronic excitations	narticle-hole	excitations co	ollect	tive excitations exci	tatio	ns in 2D 1D 0D
	nan	ostructures	purticie noie	exertations, et	ince	uve excitations, exci	uuioi	15 III 2D, 1D, 0D
	• Line	ear response and e	xcitation ener	rgies				
	• Moo	deling neutral excit	ations by tim	e-dependent	dens	sity functional theor	v	
	• Moo	deling charged and	neutral excit	ations by Gre	en's	function methods	/	
	• App	olications to spectro	oscopy					
4	Teaching	methods	17					
	Lectures,	hands-on compute	er classes, ind	ividual projec	t			
5	Prerequis	ites for participation	on	* '				
	Knowledg	ge of linux/unix en	vironment, co	ompletion of '	Fun	damental Materials	Phys	ics" or
	equivalen	t courses is recom	mended					
6	Assessme	ent methods						
	Oral exan	nination (0.5 h) on	the content o	f the lecture,	inclu	uding a short preser	tatio	n (<10 minutes)
	on the con	mputational projec	t. Bonus poir	its can be gaii	ied l	by presenting solution	ons te	o the worksheets
	in class.							
7	Prerequis	ites for the assign	nent of credi	t points				
	Passing th	he oral examination	n			11		
8	This mod	ule is used in the f	ollowing deg	ree programn	ies a	is well		
0	Physics		4.					
9		grade on total gra	ae					
10	0/11/	hility for modulo						
10	Prof Dr	Silvana Botti						
11	Other inf	ormation						
11	Recomme	ended literature R	ichard M Ma	rtin "Flectro	nic S	tructure" Cambrida	e Un	iversity Press
	Richard N	Λ Martin Lucia Re	ining David	M Cenerlev	"Int	eracting Electrons"	Cam	ibridge
	Universit	v Press.		in cepency,	1110	eracung Licenoils	Jaill	1011460
		/						

PHASE-FIELD THEURY AND APPLICATION								
Module code Student Credits Semester Frequency	Duration							
7.11 workload 6 ECTS 2nd winter term	1 semester							
180 hours								
1 Types of courses: Contact hours Independent study	Class size							
a) lecture a) 45 hrs (3 SWS) 120 hours	a) 30 students							
b) exercises b) 15 hrs (1 SWS)	b) 10-15 students							
2 Learning outcomes								
The students understand the principles of mesoscopic structure formation in o	condensed matter as							
the basis of the phase-field theory. They are able to derive the basic relations of	t this theory and relate							
the parameters to measurable physical quantities. They are able to use theoret	ical methods to inves-							
tigate scale separation in condensed matter. The students are skilled in the app	tigate scale separation in condensed matter. The students are skilled in the application of the phase- field theory in numerical simulations. In the practical exercises, they developed a simple software							
field theory in numerical simulations. In the practical exercises, they develope	field theory in numerical simulations. In the practical exercises, they developed a simple software							
code to simulate dendritic growth in 3D, thus being able to independently formulate new branches								
of the simulation software developed at ICAMS.								
5 Subject anns Dendric solidification, scale invariant solution and microscopic solvability								
Traveling wave solution of a phase front sharp and thin interface limit								
Anisotropy and the E-vector approach								
Coupling to outer fields, elasticity								
Coupling to multiphase flow via the Lattice Boltzmann method								
Microscopic variables and fluctuations, extension to critical phenomena								
Miscellaneous applications in materials science								
4 Teaching methods								
lecture, exercises								
5 Prerequisites for participation								
Students must have good knowledge in statistical and condensed matter physi	cs. Programming							
skills in C++ are of advantage.								
6 Assessment methods								
written exam (2 hours)								
7 Prerequisites for the assignment of credit points								
passing the written examination								
8 This module is used in the following degree programmes as well								
10000 Impact of grade on total grade								
6 /117								
10 Responsibility for module								
Prof Dr Ingo Steinbach Prof Dr Fathollah Varnik Dr Oleg Shchyglo								
11 Other information								
Lecture notes will be provided online.								

MUL	.TISCALI	E MECHANICS	OF MATE	RIALS				
Mod	ule code	Student	Credits	Semester	ſ	Frequency		Duration
	7.12	workload	6 ECTS	3rd		winter term		1 semester
		180 hours			_			
1	Types of o	courses	Contact I	hours	Inc	lependent study	Clas	s size
	a) lecture		a) 30 hrs	(2 SWS)	120) hours	a) 20	0 students
2	D) Class		D) 30 hrs	(2 SWS)			D) 10	0 students
2	Learning	outcomes	ltiggalo patur	o of the most	oni	cal behaviour of ma	toriala	and of the dif
	foront apr	aroachag to take thi	g into accoun	t in mochani	col n	nodelling of micros	tructu	rog Thoy can
	idontify th	no relevant length	s into account	n in mechanic		nouening of finitios	.Tuctu	moso /macro
	scopic str	ic icievant iciigin-	ationshing T	he students u	ndei	rstand the principle	s of ef	fective theory
	construct	ion coarse graining	and homog	enisation met	thod	s and they can appl	v ther	n to identify
	analyse at	nd model multiscal	e problems	such as plastic	c def	Formation hardenin	o heh	aviour and frac-
	ture of m	icrostructures. The	v are able to 1	use state of th	e art	numerical and the	oretic	al scale-bridging
	modelling	g methods. They ca	n apply num	erical tools or	ı diff	ferent length scales.	and ı	understand the
	underlyin	g principles (atomi	stic modellin	g, discrete di	sloca	ation dynamics, con	tinuu	m plasticity).
3	Subject a	ims		0		•		* */
	• S	State of the art in br	idging lengtł	n-scales in mo	odeli	ng of elasticity, plas	ticity,	and fracture
	• F	Principles and conc	epts of concu	rrent and hie	rarcl	hical multiscale mo	deling	g of materials
	• E	Basics of atomistic 1	nodeling: fro	m density fu	nctio	onal theory to large s	scale r	nolecular dy-
	r	namics	0	·				
	• [Defect identification	ı in atomistic	simulations				
	• [Discrete dislocation	dynamics					
	• (Crystal plasticity: ph	ienomenolog	ical and dens	ity b	ased methods		
	• H	Homogenization m	ethods					
4	Teaching	methods						
	lecture, co	omputer exercises,	and seminar					
5	Prerequis	ites for participatio	n					
	successfu	l completion of "Ba	asics in Mater	rials Science"	(mo	odule 2) or equivaler	ıt	
6	Assessme	ent methods	. .					
	oral (0.5 h	nours) or written (2	hours) exam	ination, depe	ndin	ig on size of the clas	S	
7	Prerequis	ites for the assignment	nent of credit	points				
0	taking pa	rt in the hands-on e	exercises and	submitting a	repo	ort, passing the exar	ninati	lon.
8	This mod	ule is used in the f	ollowing degi	ree programn	nes a	is well		
0	INOME		1					
9		grade on total grad	le					
10	0/11/	hility for modulo						
10	PD Dr h	abil Rebecca Ianisc	ĥ					
11	Other inf	ormation	.11					
11	Lecture n	otes will be provide	.d.					
	Lecture II	oles will be provide	.u.					

ADV	ADVANCED ATOMISTIC SIMULATION METHODS									
Mod	ule code	Student	Credits	Semeste	er	Frequency		Duration		
	7.13	workload	6 ECTS	3rd		winter term		1 semester		
1	Types of	180 nours	Contact h	01179	Inc	lonondont study	Clar			
1	a) lecture	louises.	a) 30 hrs (2 SW/S	120) hours	20 s	tudents		
	b) classes	focusing on hands	$a_{1} = 50 \text{ ms}$ (s- b) 30 hrs (b) 30 hrs (2 SWS)		5 110015	203	luuciits		
	on compi	itational tasks	<i>b)</i> 50 ms (201101						
2	Learning	outcomes								
	The stude	ents gain fundame	ntal knowledge	of techniqu	ies a	nd methods used in	adva	nced atomistic		
	simulatio	ns that address lar	ge system sizes	s, long-time	scale	es, and long-range i	nterac	ctions. They can		
	classify si	mulation methods	including mol	ecular static	s, m	olecular dynamics a	and M	Ionte Carlo sim-		
	ulations, a	and apply appropri	ate models of i	nteratomic	inter	cactions (DFT, tight	bindi	ng, empirical		
	potentials	s). The students can	n evaluate the v	alidity of th	e sin	nulation outcomes a	and th	neir relation to		
	measurab	ole material proper	ties for several	case studies	. Th	e students are able t	o pla	n, execute and		
	monitor a	atomistic simulatio	ns.							
3	Subject ai	ims								
	• (Generation, analysi	s and optimiza	tion of atom	nic st	tructures				
	• N	Molecular statics ar	nd relaxation al	gorithms						
	• 1	Molecular dynamic	s in various en	sembles, the	ermo	ostats				
	• N	Monte Carlo metho	ds, spin lattice	models, tra	nsiti	on state theory				
	• A	Accelerated techniq	ues and hybrid	l approaches	5					
	• F	Rigorous coarse-gra	aining of atomi	c interaction	n mo	odels				
	• \	Workflows for atom	nistic simulatio	ns		C 1				
	• (Case studies: e.g. el	asticity and ph	onons, diffu	ision	i, ferroelectricity, me	elting			
4	Teaching	methods								
-	lecture, ex	xercises								
5	backgroup	nd in physical chor	on Digtag or rolato	d diaciplina	lano	wladge of linux luni	w onv	ironmont and		
	Dackgrou	'/Fortran program	ming language	a aiscipiine,	KIIO	wiedge of fillux/ull	IX env	iroiiiiieiit allu		
	narticinat	ion in "advanced n	umerical meth	s Inds: atomis	tic si	imulation methods"	or si	milar course		
6	Assessme	ent methods	uniencai metri			initiation methods	01 51	iiiiai course.		
Ŭ	oral (0.5 k	nours) or written (2	hours) examir	nation. Boni	is po	oints can be gained l	ov sul	omitting solu-		
	tions to th	ne problem sheets	that are distrib	uted in class	ло ре 5.	Sinto can de Gamea		Summering South		
7	Prerequis	ites for the assign	nent of credit I	points						
	passing th	ne exam (bonus po	ints will be tak	en into acco	unt)					
8	This mod	ule is used in the f	ollowing degre	e programn	nes a	ıs well				
	none									
9	Impact of	f grade on total gra	de							
	6/117									
10	Responsi	bility for module								
	Prof. Dr.	Anna Grünebohm	and Dr. Matou	is Mrovec						
11	Other inf	ormation								
	-									

COM	COMPUTATIONAL FRACTURE MECHANICS									
Mod	lule code	Student	Credits	Semester	r	Frequency		Duration		
	7.14	workload	6 ECTS	3rd		winter term		1 semester		
		180 hours								
1	Types of o	courses:	Contact h	ours	Ind	lependent study	Cla	ss size		
	a) lecture		a) 30 hrs (2 SWS)	120) hours	a) 2	0 students		
	b) class		b) 30 hrs (2 SWS)			b) 1	0 students		
2	Learning	outcomes		.1 . 1	c			C · 1		
	The stude	nts attain the abilit	y to independe	ently simulat	te fra	acture including pla	sticit	y for a wide		
	range of r	naterials and geom	etries. Based o	on the acquir	ed u	inderstanding of the	e diff	erent types of		
	brittle fra	cture and ductile fai	lure of mater	ials, they are	ena	bled to choose appro	opria	te fracture mod-		
	els and to	implement them in	i a finite elem	transa of from	nen	t. They gain sufficie		iowiedge about		
	indopond	encal Dackground of	oring lovel th	o students d	iacri	minate between git	le Tel	evallt illerature		
	in a struc	ture or component	can be tolerate	e students d	whic	h conditions cracks	atio	not admissible		
	respectively.									
3	Subject ai	ms								
	• F	henomenology of f	racture/Fractu	are on the at	omi	c scale				
	• (Concepts of linear el	astic fracture	mechanics						
	• (Concepts of elastic-p	lastic fracture	mechanics						
	• F	curve behavior of	materials							
	• (Concepts of cohesive	zones (CZ),	extended fin	ite e	lements (XFEM) an	d dai	mage mechanics		
	• F	inite element mode	eling of fractu	re for static a	ind o	dynamic cracks				
	• A	Application to brittle	fracture & du	actile failure	for o	different geometries	and	loading situa-		
	t	ions								
4	Teaching	methods								
	lecture, h	ands-on classes, mi	ni-project incl	. seminar tal	k, a	ssignments				
5	Prerequis	ites for participation	n 							
-	basic kno	wledge about solid	mechanics an	d plasticity is	s rec	commended				
6	Assessme	ent methods				1 10 1				
	Portfolio	exam including rep	orts on assign	ments, semi	nar	and self-evaluation	repo	rt		
7	Prerequis	ites for the assignm	ient of credit j	points						
0	passing fi	nai module examin	ation							
ð	Computer	tional Engineering	Master course	e programm Naschinor	les a	is well				
0	Impact of	arado on total arad			IDat	ł				
,	6/117	grade on total grad	C							
10	Responsi	vility for module								
10	Prof. Dr.	Alexander Hartmai	er							
11	Other inf	ormation	-							
	Lecture n	otes will be provide	d.							

ADVANCED STATISTICAL METHODS IN MATERIALS SCIENCE									
Mod	ule code	Student work-	Credits	Semester	1	Frequency		Duration	
	7.15	load	6 ECTS	3rd		winter term		1 semester	
	-	180 hours					-		
1	Types of o	courses	Contact	hours	Inc	lependent study	Cla	ss size	
	a) lecture		a) 45 hrs	(2 SWS)	120) hours	a) 1	5 students	
	b) class		b) 15 hrs	s (1 SWS)			b) 1	5 students	
2	Learning	outcomes							
	After part	icipating in the m	odule student	S					
	• r	emember a variety	of uncertaint	ty indication r	neth	ods, their limitation	is and	d applicability	
	• a	pply active learnin	g and Bayesia	in optimizatio	on m	ethods to materials	prop	erties optimiza-	
	t	ion problems	11	C 1					
	• C	onstruct deep gen	erative model	s for material	s pro	operties generation			
	• a	ssess limitations a	nd applicabili	ity of these me	etho	ds and select proper	met	hods for particu-	
	• 6	reate Python code	to implement	t and use aboy	ve-m	entioned methods t	o sol	ve simple prob-	
	le	ems	to implement	t allu use abov	vC-111	ientioned methods (0 301	ve simple prob-	
3	Subject ai	ims							
	• P	Probability distribu	tions and Bay	esian statistic	S				
	• T	Uncertainty indicat	ion and quan	tification					
	• E	Bayesian optimizat	ion						
	• A	Active learning							
	• (Generative models	(neural netwo	orks - auto-en	code	rs, generative adver	saria	l networks, etc.)	
4	Teaching	methods							
	lecture, cl	asses including ha	nds-on exerci	ises with Pyth	on a	nd Jupyter notebool	k, mi	ni project	
5	Prerequis	ites for participation	on	(, , 1 T C		· " 1"D · 1 ·		1 .	
	Successful	il completion of th	e modules "M	laterials Infor	mat	ics" and "Data-drive	n ma	iterials science –	
6		nt methods	ienaea.						
Ŭ	Completie	on of mini project	with written 1	project report					
7	Prerequis	ites for the assign	nent of credit	t points					
	Accepted	project report		1					
8	This mod	ule is used in the f	following deg	ree programn	nes a	ıs well			
	None								
9	Impact of	grade on total gra	de						
10	6/117 Decreanti	h:1:							
10	Responsi	Dility for module	veggorghin						
11	Other info	ormation	ysogoiskiy						
11	Literature								
	• T	. Hastie, R. Tibshi	rani. I. Friedi	man: The Eler	men	ts of Statistical Lear	ning:	Data Mining.	
	I	nference, and Pred	liction, Sprin	ger (2009);			8.		
	• A	A. Gelman, J. B. Ca	rlin, H. S. Ste	ern, D. B. Dur	nson	, A. Vehtari, D. B. R	ubin	: Bayesian Data	
		Malysis, Chapman	and Hall/CR	C (2013);	C.	tatistics in Duthers (?)nd c	d) O'Bailler	
		Jowney, Allen B. (A	2021). I mink l	Dayes: Bayesia	411 Sl	austics in Python (2	ind e	u.j. U Keilly.	
		Oster D. Generativ D'Reilly Media, 201	e deep learni 9.	ng: teaching i	nach	lines to paint, write,	, com	pose, and play. –	
	• J	. VanderPlas: Pyth D'Reilly (2016)	on Data Scier	nce Handbook	c: Es	sential Tools for Wo	orking	g with Data,	

SUR	FACE SO	CIENCE AND C	ORROSION					
Mod	lule code	Student	Credits	Semeste	r	Frequency		Duration
	7.16	workload	6 ECTS	3rd		winter term		1 semester
		180 hours			-			
1	Types of o	courses:	Contact he	ours	Inc	aependent study Cla		ss size
	a) lecture		a) 45 hrs (.	3 SWS)	120) hours	a) 2	5 students
2	b) class		b) 15 hrs (I SWS)			D) 2	25 students
2	Learning	outcomes				· · · · · · · · · · · · · · · · · · ·		1
	Students	will gain a fundam	iental understa	naing of cor	rosi	on science, from da	sic ei	ectrochemistry
	or nomog	eneous metal corre	They will mean	a aspects of	local	lized corrosion, as v	ven a	s of complex
	compone	nts and structures.	I ney will men	norize the ba	asics	s of applied surface	techn	Furth array are
	the are ab	lo to rolato thoir kr	nuung an oun	ook of flovel	noct	a of matorials soloci	ion i	. Fulliennoie,
	sion dam	age and measures	for counteracti	gilleetilig as	speci	S OI IIIateriais seleci	.1011, 6	analysing corro-
3	Subject a	age and measures			1.			
5		hort introduction i	nto surface sci	ence and ele	octro	chemistry		
	• f	indamental aspect	s of corrosion	crience, the	rmo	dynamics and kinet	ics (P	ourbaix dia-
	• 1	rams Butler-Volm	er equation etc	~	11100	aynamics and kinet		Ourbaix uia-
	e r	assivity of materia	lei equation ett					
	• +	vnical corrosion pr	oblems such a	s atmosphe	ric co	orrosion himetal co	rrosi	on localised cor-
	r	osion corrosion il	nder biofilms 1	basics of hig	h te	mperature corrosio	11031 1	on, iocanscu coi
	• r	naterials choices b	ased on applica	tion require	mer	ts (such as corrosiv	enes	s of the environ.
	r	nent)	ased on applied	non require		113 (30011 83 0011031)	CIICS	
	• 0	ountermeasures a	painst corrosio	n. such as b	v ele	ctrochemical corros	ion n	protection, by im-
	r	proved construction	, metallic, inor	ganic and o	rgan	ic coatings and rela	ted p	re-treatments.
	i i	nhibitors	-,,	8	-8		···· r	
	• e	valuation of corros	sion damage					
	• 0	ounteracting meth	ods best to use	for differen	it cas	ses		
4	Teaching	methods						
	lecture, cl	ass, including a sh	ort lab course					
5	Prerequis	ites for participation	on					
	successfu	l completion of "St	tatistical Mecha	anics and Fu	ında	mental Materials Pl	nysic	s" (2c) and
	"Element	s of Microstructure	e" (2a) recomm	ended.				
6	Assessme	ent methods						
	written ex	amination (2 hour	rs)					
7	Prerequis	ites for the assign	nent of credit p	points				
	passing th	ne written examina	tion					
8	This mod	ule is used in the f	following degre	e programn	nes a	ıs well		
	Master of	Science in Mecha	nical Engineeri	ng: Werksto	off-E	ngineering		
9	Impact of	grade on total gra	de					
	6/117							
10	Responsi	bility for module						
	Prof. Dr.	rer. nat. Martin Str	atmann, Dr. re	er. nat. Mich	ael I	Rohwerder		
11	Other info	ormation						
	Lecture n	otes will be provide	ed.					

MATERIALS FOR AEROSPACE APPLICATIONS									
Mod	ule code	Student	Credits	Semeste	r	Frequency		Duration	
	7.17	workload	6 ECTS	3rd		winter term		1 semester	
		180 hours							
1	Types of o	courses:	Contact he	ours	Ind	dependent study Cla		ss size	
	a) lecture	2	a) 45 hrs (a) 45 hrs (3 SWS) 120) hours	a) 2	25 students	
-	b) class		b) 15 hrs (1 SWS)			b) 2	25 students	
2	Learning	outcomes		C 1. : . 1 C					
	Students	gain a comprehens	ive overview o	of high perio	orma	ance materials for a	erosp	bace applications,	
	which inc	iudes the well-intro	aucea materia	ais and mate	riai	systems as well as n	ew a	levelopments and	
	visionary	concepts. They und	arstand now	materials al	ia n fotia	naterial systems are	aesi	igned to be light	
	anu renat	onte under extreme s	can catogorize	the degrad	tion	ue loading, night ter	nper	atures, and loarn how	
	characteri	ization and testing r	call categorize	end for quali	fvin	a materials and join	te foi	r perospace appli-	
	cations T	hev are able to appl	v concepts and	d methods f	rynn Sr lif	fetime assessment	15 10	actospace appli-	
3	Subject a	ms	y concepts un	a methods i	<i>J</i> 1 111	etille ussessillent.			
5	• 1	oading conditions f	or componen	ts of air- and	sna	ce crafts (structures	and	engines)	
	• 1)evelopment of mat	erials and ma	terial system	is fo	r specific service co	nditi	ons in aerospace	
		polications (e.g. for	aero-engines	rocket engi	nes	thermal protection	shiel	ds for re-entry	
	v	ehicles, light weigh	t structures fo	r airframes.	win	gs, and satellites)	Sinci	us for re entry	
	• T	Degradation and day	nage mechani	isms of aero	snac	e materials and mat	erial	systems under	
	s	ervice conditions	inge meenum	191119 01 d010	Pue				
	• (Characterization and	l testing meth	ods for mate	erial	s and joints for aero	space	e applications	
	• (Concepts and metho	ds for lifetime	e assessmen	t. In	troduction to conce	pts of	f mechanical	
	p	properties of materia	als (stress-stra	in curves, st	iffne	ess, strength, ductili	ty)		
4	Teaching	methods					.,		
	lecture, cl	ass							
5	Prerequis	ites for participation	n						
	backgrou	nd in materials scie	nce, mechanio	cal engineer	ng,	physics or related di	iscipl	line	
6	Assessme	ent methods							
	written (2	hours) or oral (0.5	hours) examir	nation, depe	ndin	ig on number of stu	dent	S	
7	Prerequis	ites for the assignm	ent of credit p	points					
	passing th	ne exam							
8	This mod	ule is used in the fo	llowing degre	e programn	ies a	is well			
	Master of	Science in Mechan	ical Engineeri	ng: Werksto	tt-E	ngineering			
	Master of	Science in Comput	ational Engin	eering					
9	Impact of	grade on total grad	e						
10	0/11/ Decrease:	h:1: for modulo							
10	Responsi	Duity for module	2						
11	Other inf	nig. Warton Dartsch	l						
11	Locture n	otog will be provide	donling						
1	Lecture n	oles will be provide	a omme.						

Mod	lule code	Student	Credits	Semester	Frequency		Duration
	7.18	workload	6 ECTS	3rd	winter term		1 semester
		180 hours					
1	Types of o	courses:	Contact he	ours	Independent study	Cla	ss size
	a) lecture		a) 30 hrs (2	2 SWS)	120 hours	a) 1	5 students
	b) exercise	es	b) 30 hrs (2 SWS)		b) 1	5 students
2	Learning	outcomes					
	By comple	eting the course, st	udents gain in	sight into a r	ange of three-dimensi	onal r	nanoscale and
	atomic sc	ale material charac	terization tech	niques, e.g. 3	D x-ray microscopy, el	lectro	n tomography
	and atom	probe tomography	. They can des	cribe the wor	king principles of eacl	h tech	nique in detail,
	summariz	ze applications in a	vast of applica	tions, such a	s engineering alloys, c	atalys	t materials, sem-
	iconducto	rs, etc. and solve so	cientific questi	ons related to	material science by u	sing t	hree-dimen-
	sional ma	terial characterizat	ion techniques	. Additionall	y, students will unders	stand	three-dimen-
	sional nai	noscale and atomic	scale material	characteriza	tion methods, which a	re cur	rently extremely
	important	t in Doth industry a	ind academia, a	and achieve s	ome basic nands-on ex	xperie	ence on sample
	preparatio	m and sample ana	lysis on one of	these technic	lues (depends on the a	ivanai	bility of instru-
2	Subject a	ma					
3	Subject al	IIIS D Enorm dianorai	V rou apoctr	aconu			
	• 3	D Eilergy-uispersio	ve A-ray specific	oscopy			
	• 5	tom probe tomogr	scopy saby				
	• P	loctron tomograph	арпу				
		rectron tomograph	ly				
		clay tollography	licing/sconnin	a oloctron m	icroscopy		
4	Teaching	methods	sitcing/scattini	ig election in	icroscopy		
4	lecture ex	vercises					
5	Prerequis	ites for participatio	n .				
5	none	nes for participatio	/11				
6	Assessme	ent methods					
U	During th	e semester each st	udent will be a	ssigned a cu	rent topic on which th	ne stu	dent has to write
	a five-pag	e report and give a	talk.	ssigned a ca		10 500	
7	Prerequis	ites for the assignr	nent of credit r	ooints			
	Submissi	on of report and ho	olding of semir	ar talk			
8	This mod	ule is used in the f	ollowing degre	e programm	es as well		
	Masters N	Aechanical Enginee	ering: Werksto	ff-Engineerir	ıg		
9	Impact of	grade on total grad	de	0	v		
	6/117	0					
10	Responsi	bility for module					
	Prof. Dr.	Tong Li					
11	Other info	ormation					
	-						

Modu	ıle code	Student	Credits	Semester		Frequency		Duration
	7.19	workload	6 ECTS	3rd		winter term		1 semester
		180 hours						
1	Types of o	courses:	Contac	hours	Ind	lependent study	Cla	ss size
	a) lecture	+ group seminar	a) 30 hi	rs (2 SWS)	120) hours	a) 1	0 students
	b) practica	al studies	b) 30 hi	rs (2 SWS)			b) 1	10 students
2	Learning	outcomes						
	Students	are able to formula	ite and desci	ribe the found	lation	s of electronic stru	cture	calculations.
	This will i	Include the transla	tion of the q	uantum mec	hanica	al equations into p	seudo	code that may
	then be in	nplemented in con	nputer code	. They will be	able t	to use and implement	ent th	e most common
	to apprais	a solvers that are en	mpioyea in o	quantum med	name ulatio	ai problems. In un	us way	so be enabled to
	choose th	e most appropriate	electronic s	tructure com	nutati	ional method and i	mnlei	so be ellabled to
	given rese	e most appropriate			Pulat	ionai menioù allu l	mpie	
3	Subject ai	ms						
0	• •	Numerical impleme	entation and	solution of a	singl	e particle Schrödin	iger e	nuation (electron
	i	n an effective poter	ntial)	, portation of a	511-61	Particle Sellioan	801 0	function (creection
	• E	Basis sets, represen	, tation of op	erators in a ba	asis			
	• F	Results, analysis an	d visualizati	on of electror	nic str	ucture calculations	5	
	• 1	Numerical converge	ence					
	• P	lane-wave pseudo-	potential m	ethod (iterativ	ve diag	gonalization, self-c	onsist	ency)
	• 1	ight binding Meth	od					
	• E	Bond-order potentia	als					
	• S	pecial topics and a	pplications	(structural sta	bility	, magnetism).		
4	Teaching	methods						
	lecture, p	ractical studies and	l group sem	inars				
5	Prerequis	ites for participatio	on	• • •	1	1.1	D1	• "•
	successfu	I completion of "Ir	itroduction	to Quantum I	Mecha	anics in Solid State	Phys	ics" is recom-
6	mended.	nt matheda						
U	written	amination (1.5 hor	ure)					
7	Prerequie	ites for the assignt	nent of cred	it noints				
/	positively	evaluated written	report and p	assing of eval	m			
8	This mod	ule is used in the f	following de	pree program	mes a	ıs well		
0	None	and is used in the I		9 k				
9	Impact of	grade on total grad	de					
-	6/117	8 8						
10	Responsi	bility for module						
	Prof. Dr.	Ralf Drautz, Prof. 1	Dr. Jörg Neı	ıgebauer				
11	Other information							
	Lecture notes will be provided.							

LAT	LATTICE BOLTZMANN MODELLING:										
FRO	M SIMPL	E FLOWS TO	INTERFAC		N Pł	HENOMENA					
Mod	ule code	Student work-	Credits	Semester	r	Frequency		Duration			
	7.20	load	6 ECTS	3rd		winter term		1 semester			
		180 hours			r						
1	Types of o	courses	Contact	hours	Inc	lependent study	Cla	ss size			
	a) lecture		a) 30 hrs	(2 SWS)	120) hours	a) 1	0 students			
	b) class		b) 30 hrs	(2 SWS)			b) 1	0 students			
2	Learning outcomes										
	On succes	sstul completion of	this module	, students wil	l rec	all equations of hyd	rodyr	namics and their			
	solutions	for simple cases su	ich as hydros	tatic pressure	e in a	in ideal gas (barome	tric f	ormula), planar			
	Couette fl	ow and the Poiseu	ille flow. The	y can outline	the	lattice Boltzmann m	letho	d (LBM) and ap-			
	ply a simple code for simulating flow via LBM. Using the above mentioned simple cases, the stu-										
	nroblems	dents will be able to examine the validity of the LBM code and also address a number of interesting									
	ofliquids	on solid surfaces	w ioi piessui	e unicicilee i	II uiv	ops and then enviro	mine	ints and wetting			
3	Subject ai	ms									
5	• I	ntroduction to fluid	dynamics o	n the continu	um	level (Euler and Nav	ier-S	tokes equations)			
	• F	Basics of the lattice	Boltzmann n	nethod (LBM))	lever (Buier und riu)	ier b	tokes equations)			
	• 5	imulation of multi	phase fluids:	drops, bubbl	es						
	• V	Vetting	priase marasi	arops, 54661	0.0						
4	Teaching	methods									
	lecture, gr	roup work, case stu	dies, discuss	ions							
5	Prerequis	ites for participatio	n								
	familiarit	y with computer pr	ogramming	(C, Fortran, o	r equ	uivalent)					
6	Assessme	ent methods									
	oral exam	ination (0.5 hours)									
7	Prerequis	ites for the assignment	nent of credit	t points							
	passing th	ne exam (for active	participation	in the lecture	e, bo	nus points will be co	onsid	ered)			
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	ıs well					
	none										
9	Impact of	grade on total grad	le								
10	6/11/	11. C 1 1									
10	Responsi	Fathallah Varaila									
11	Other inf										
11	Lecture n	otes will be provide	h								

INTERATOMIC POTENTIALS										
Mod	lule code	Student work-	Credits	Semester		Frequency		Duration		
	7.21	load	6 ECTS	3rd		winter term		1 semester		
	1	180 hours								
1	Types of o	courses	Contact	nours	Ind	lependent study	Cla	ss size		
	a) lecture		a) 30 hrs	(2 SWS)	120	hours	a) 1	0 students		
	b) exercis	es	b) 30 hrs	(2 SWS)			b) 1	0 students		
2	Learning	outcomes		11.		. 16 1	1	<u> </u>		
	After participating in the module, students are able to understand fundamental concepts of intera-									
	tomic pot	entials based on th	e electronic s	tructure, on c	lassi	cal approaches and	on n	nachine-learning.		
	I ney are a	able to carry out ato	the entropy	ations for var	lous	materials using int	erato	mic potentials		
2	Subject of	aryze and interpret	the outcome	8.						
5	Subject al	mis regione of interatomi	cintoraction							
		tropic structure ap	provimations	, (tight bindin	a bo	nd order notential	-)			
	• clee	sical potentials (Le	proximations nnard-Iones	embedded-at	g, DC 2m/l	Finnis-Sinclair Ter	soff)			
	Classical potentials (Lennard-Jones, embedded-atom/Finnis-Sincialr, Tersoff) force fields (Amber Charmer BeavEE)									
	• Torce fields (Amber, Charmin, KeaxFF)									
	many-atom expansions/cluster expansions machine learning potentials (neural networks, Caussian approximation potentials, memory									
	t	ensor potentials, at	omic-cluster	expansion, m	essa	ge-passing and grai	oh re	presentations)		
	• mag	netism. charge-tra	nsfer, polariz	ation	coou	90 Pubbing and Braj		p105011001015)		
	• para	ameterization and	validation							
	• s	imulation tools and	d applications	5						
d4	Teaching	methods								
	lecture, co	omputer exercises								
5	Prerequis	ites for participation	on							
	none									
6	Assessme	ent methods								
	individua	l project and/or ora	al examinatio	n (0.5 hours),	depe	ending on size of cl	ass			
7	Prerequis	ites for the assignr	nent of credit	points		_				
	successfu	l completion of pro	oject / passing	g of written ex	ami	nation				
8	This mod	ule is used in the f	ollowing deg	ree programm	ies a	s well				
	none									
9	Impact of	grade on total grad	de							
10	6/11/									
10	Dr Motor		habil Thoma	a Unmmora	hmi	4+				
1	Dr. Matous Mrovec, PD Dr. habil. Thomas Hammerschmidt									
11	Other inf	ormation								

GENERAL OPTION MODULE										
Mod	ule code	Student	Credits	Semeste	er	Frequency		Duration		
	8	workload	6 ECTS	1st		free choice of		1 semester		
		180 hours				available module	es			
1	Types of o	courses:	Contact he	ours	Ind	lependent study	Clas	ss size		
	lecture an	id class	60 hrs		120	hours				
2	Learning	outcomes								
	By freely choosing lectures, the students can widen their skill and method spectrum according to									
	their personal interests.									
3	Subject ai	ims								
	• [Develop knowledge	and skills in fi	elds beyond	l eng	ineering and scienc	e			
	Deepen knowledge about specific topics in Materials Science and Simulation according to own interests									
	• Any module from a Master's course at RUB will be recognized. Some suggested courses									
	a	are listed under points 6 and 7 (Elective and Specialization Modules in MS). Courses from								
	the RUB's main course catalogue and from the international course catalogue can be taken									
	i	nto account.								
4	Teaching	methods								
	see specif	ic module descript	ion							
5	Prerequis	ites for participatio	n							
	none									
6	Assessme	ent methods								
	written or	oral examination a	as given in spe	cific module	e des	cription				
7	Prerequis	ites for the assignm	nent of credit p	oints						
	passing th	ne examination								
8	This mod	ule is used in the f	ollowing degre	e programn	nes a	s well				
	see specif	ic module descript	ion							
9	Impact of	grade on total grad	le							
10	6/117									
10	Responsi	bility for module								
11	Prot. Dr.	Alexander Hartmai	er							
11	Other info	ormation								
	-									

INDUSTRIAL INTERNSHIP										
Mod	ule code	Student	Credits	Semeste	er	Frequency	tor	Duration		
	0.1	180 hours	0 EC15	510		summer and win	ler	1 semester		
1	Types of	courses:	Contact he	ours	Inc	lependent study	Class	s size		
-	practical	work	20 hours	Juis	160	0 hours	1 stu	dent		
	1									
2	Learning	outcomes	·							
	The stude	ents gain an initial	insight into ind	dustrial prac	ctice,	, enabling them to a	pply th	ne skills they		
	have learn	ned thus far to real	world problem	is. They leai	m al	pout various areas of	activi	ty within a		
	company	, which allows then	n to assess the	requiremen	ts of	different tasks and	use th	is knowledge		
2	for their of	own purposes, part	icularly in mak	ing informe	ea ca	ireer choices in a tar	getea	manner.		
5	During th	uus oo siy week internsl	nin in a researd	h and devel	onr	ent department act	ivitios	must be		
	related to	one or more of the	following field	li anu ucver ls·	opin		livities	inust be		
	• r	naterials design or	development							
	• r	naterials synthesis	······································							
	• r	naterials testing								
	• r	naterials selection	in the product	developmer	nt pro	ocess				
	• r	naterials processin	g	-	-					
	• r	naterials characteri	sation							
	• r	naterials simulation	n							
	• r	naterials related da	ta science							
	• 0	other materials rela	ted areas							
4	Teaching	methods								
_	6 week in	ternship in researc	h and developi	ment depart	men	it of a materials scie	nce rel	lated company		
5	Prerequis	ites for participation	n							
6	none	nt mothods								
0	Written r	enort (12.20 pages)	in the commo	n scientific	form	nat to be handed in	two w	eeks after the		
	end of the	e six week internsh	in the commo	ii sciciitiic	10111	iut, to be nunded in		certs unter the		
7	Prerequis	ites for the assignr	nent of credit I	ooints						
	Positive e	valuation of the wr	itten report, in	ternship co	nfirr	nation or reference	letter c	of employer		
8	This mod	lule is used in the f	ollowing degre	e programn	nes a	as well				
	none									
9	Impact of	f grade on total grad	le							
	6/117									
10	Responsi	bility for module								
11	Prot. Dr.	Alexander Hartma	ler							
11	Other inf	ormation	otod with the	orrean or 1:		unomigon of DUD in	o duro	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	A workpl	an must be coordin	ialed with the G	Jorrespondi	ug si	upervisor at RUB in	auvan	.ce.		

DOC	DOCUMENTING AND COMMUNICATING SCIENCE 1									
Mod	ule code	Student	Credits	Semeste	r Frequency		Duration			
	9a	workload	3 ECTS	1st	winter term		1 semester			
		90 hours								
1	Types of o	courses:	Contact he	ours	Independent study	Cla	ss size			
	a) lecture		a) 15 hrs (1 SWS)	60 hours	30 s	students			
	b) class		b) 15 hrs (1 SWS)						
2	Learning	outcomes								
	Participar	nts will learn how to	o prepare diffe	rent types of	f scientific documents.	Struct	tural elements of			
	different formats will be discussed. An introduction to scientific typesetting, plotting and graphic									
	tools will be given. After successful participation, students know the basics about scientific writing									
	and can independently									
	 choose an appropriate format for presenting numerical data 									
	• create appealing, publication-ready graphics, figures, and tables									
	•	create structured do	ocuments usin	g LaTeX for	typesetting					
3	Subject aims									
	Structures, style, and types of scientific documents									
	• LaTeX									
	• (Graphics and image	es							
	• 4	Assessment, structu	iring, and visu	alization sci	entific data					
4	Teaching	methods								
	Lecture a	nd hands-on tutoria	als in CIP-pool							
5	Prerequis	ites for participatio	n							
	none									
6	Assessme	ent methods					1			
	Hands-or	assessment in CII	pool: visualiz	ing given so	ientific data and embed	lding,	description in a			
7	Lalex do	cument template								
/	Prerequis	utes for the assigning	nent of credit p	Doints						
0	This mod	valuation of the na	allowing dogra							
0	none	luie is used in the fo	bilowing degre	e programm	ies as well					
9	Impact of	grade on total grad	le							
ĺ	3/117	- 5- auc on total glat	*~							
10	Responsi	bility for module								
	Prof. Dr.	Anna Grünebohm.	Prof. Dr. Mar	kus Stricker						
11	Other inf	ormation								
	-									

DOCUMENTING AND COMMUNICATING SCIENCE 2									
Mod	ule code	Student	Credits	Semeste	r	Frequency		Duration	
	9b	workload	3 ECTS	2nd		summer term		1 semester	
		90 hours							
1	Types of o	courses:	Contact he	ours	Inc	lependent study	Cla	ss size	
	a) lecture		a) 15 hrs (1 SWS)	60	hours	30 s	students	
	b) class		b) 15 hrs (1 SWS)					
2	2 Learning outcomes								
	After successful participation, students can independently								
	perform literature research								
	• evaluate text from scientific journal publications w.r.t. formal scientific writing criteria,								
	style, and information content								
	•	prepare a short wri	tten report on a	a scientific t	opic	in materials science	2		
_	•	present (oral & slid	es) a literature	survey on a	curi	rent topic in materia	ls sc	ience.	
3	Subject aims								
	Literature research, citations, quotations, copyright issues, plagiarism								
	Presenting and structuring a scientific topic								
	• (Dral presentation to	ols						
4	Teaching	methods	1	1					
	Lecture a	nd hands-on tutoria	als in CIP-pool	, literature-r	evie	w as independent st	udy		
5	Prerequis	ites for participatio	n						
6		nt mothoda							
0	Short wri	tten report short o	ral presentation	n					
7	Prerequis	ites for the assign	nent of credit r	noints					
`	Positive e	valuation of the wr	itten report (lit	erature rese	arch	on an individual to	pic) a	and successful	
	presentat	ion of the topic dur	ing a mini syn	nposium.			P10) (
8	This mod	ule is used in the f	ollowing degre	e programn	ies a	s well			
	none		0 0	1 8					
9	Impact of	grade on total grad	le						
	3/117	0 0							
10	Responsi	bility for module							
	Prof. Dr.	Anna Grünebohm,	Prof. Dr. Mar	kus Stricker					
11	Other inf	ormation							
	-								

NON	NON-TECHNICAL ELECTIVE MODULE - RUB SOFT SKILLS/LANGUAGE COURSE										
Mod	ule code	Student	Credits	Semeste	r	Frequency		Duration			
	10	workload	3 ECTS	2nd		summer term		1 semester			
		120 hours				free choice of					
						available module	es				
1	Types of o	courses:	Contact he	ours	Ind	lependent study	Cla	ss size			
	lecture ar	nd class	45 hrs		75	hours					
2	Learning	outcomes									
	Students	broaden their kno	wledge base, sl	kills, or metl	nod s	spectrum according	to th	eir personal in-			
	terests.										
3	Subject a	ims									
	• I	Develop knowledge	and skills in fi	elds beyond	eng	ineering and scienc	e				
	• (Gain and develop k	nowledge in no	on-technical	subj	ects, related to mate	erials	engineering,			
	like business administration according to own interests										
	• [Develop and practic	e communicat	ion skills							
4	Teaching	methods									
	see specif	ic module descript	ions								
5	Prerequis	ites for participation	on								
	none										
6	Assessme	ent methods									
	written or	oral examination	as given in spe	cific module	des	cription					
7	Prerequis	ites for the assignr	nent of credit p	points							
	passing th	ne examination									
8	This mod	ule is used in the f	ollowing degre	e programn	ies a	s well					
	none										
9	Impact of	grade on total grad	de								
10	Responsi	bility for module									
11	see specif	ic module descript	1011								
11	Other inf	ormation									
	-										

MATERIALS MODELLING LAB										
Mod	lule code	Student work-	Credits	Semester	r	Frequency	D	uration		
	11	load	6 ECTS	1st		Winter term	1 s	emester		
		180 hours								
1	Types of o	courses	Contact	hours	Ind	lependent study	Class size			
	class		45 hrs (3	SWS)	135	hours	30 student	IS		
2	T									
Z	Learning	outcomes	n matoriala r	alated comp	itor a	simulations on diff	oront time	nd longth		
	scales Th	are able to perior	alvze the sin	vulation resul	ller s Ite ar	ad summarize and	discuss the	m in short		
	written re	ports They learn	self-organiza	tion and tim	e ma	in summarize and	ning perfor	ming and		
	evaluating	simulations along	the standard	ls of good res	earc	h practice.		iiiiig uiiu		
3	Subject ai	ims)	0		-1				
	The follow	ving methods will l	be introduced	l and applied	for c	omputer simulatior	ns of materia	al behavior		
	at various	length and time so	ales:			_				
	• E	Electronic structure	calculations	(Density Fun	ctior	nal Theory)				
	• N	Aolecular Dynamic	s							
	• F	hasefield								
	• (Calculation of Phase	e Diagrams (CalPhaD)						
	• N	Aicromechanical si	mulations wi	th the Finite	Elen	ient Method				
	• A	Artificial Intelligenc	e and machi	ne learning						
4	Teaching methods									
5	Class With	ites for participatio	omputer exp	eriments) as i	eam	work in teams of 2-	3 students			
J	None	nes for participatio	11							
6	Assessme	ent methods								
	Oral exan	n (20 minutes)								
	Group wo	ork for each experir	nent: entranc	e exam (5-10	min	utes), written repor	t (3-5 pages)	and oral		
7	discussion	n of results (5-10 m	inutes) for each	ach team						
/	Prerequis	f oral exam and acc	conted writter	reports of al	1 ovr	eriments: up to two	ovnorimon	te can be		
	repeated		epieu wiittei	i reports of a	і слр	eriments, up to two	скрепшен			
8	This mod	ule is used in the f	ollowing deg	ree programn	nes a	s well				
	none			F - 8						
9	Impact of	grade on total grad	le							
	6/117	0 0								
10	Responsi	bility for module								
	Prof. Dr.	Alexander Hartmai	er, Dr. Oleg	Shchyglo						
11	Other info	ormation		.1 . 1 1	1		11 - 1			
	A lecture	script, including in	ion locture h	o the individu	al e	xperiments is provi	aed. Each e	xperiment		
	consists o	f the results a surrit	ton report on	d the discuss	sor, a	all entry exam, the	computer s	rinulation,		
	anaiysis o	i me results, a writ	ten report an	u the discuss		n me report with th	e supervisoi	•		

RESEARCH PROJECT										
Mod	lule code	Student	Credits	Semeste	er	Frequency		Duration		
	12	workload	6 ECTS	3rd		continuous offers	of	1 semester		
		180 hours				topics				
		(4 months)								
1	Types of o	courses:	Contact he	ours	Inc	lependent study	Cla	ss size		
	practical v	work	20 hrs		160) hours	1-3	students		
2	Learning outcomes									
	The students can structure a complex research task into sub-tasks and work packages. They develop									
	individual	l problem solution	strategies to ta	ckle differe	nt ta	sks by applying scie	ntific	c methods. Stu-		
	dents are	able to report and	present scienti	fic projects.						
3	Subject ai	ms								
	Treatmen	t of a scientific sub	ject in a given	time						
	Scientific	solution for a give	n practical prol	olem						
	Application of learned techniques from previous modules									
	leamwor	K	1.							
	Written p	resentation of the i	results							
4	Teaching	methods	به مابا ممانه م			:				
	continuot	as contact periods t	o advice the st	udent, prese	entat	ion of progress duri	ng g	roup seminars		
5	Broroquis	itos for participatio	n							
2	successfu	l completion of all	ompulsory m	odules of fir	ret ai	nd second semester				
6	Assessme	nt methods	compulsory m	oduics of m	sta	iu seconu semester				
Ŭ	written re	port (20 to 50 page	S)							
7	Prerequis	ites for the assignr	nent of credit i	points						
-	positively	evaluated written	report							
8	This mod	ule is used in the f	ollowing degre	e programn	nes a	s well				
	none		0 0	1 0						
9	Impact of	grade on total grad	le							
	6/117									
10	Responsi	bility for module								
	all lecture	rs of the Master co	urse							
11	Other info	ormation								
	-									

MAS	TER TH	ESIS							
Mod	lule code	Student	Credits	Semester	Frequency	Duration			
	13	workload	30 ECTS	4th	continuous offers	s of 1 semester			
	-	900 hours			topics				
1	Types of o	courses:	Contact he	ours	Independent study	Class size			
	practical v	work	100 hrs		800 hours	1 student			
2	2 Learning outcomes After successful completion of the master thesis students are in a position to independently process research tasks by applying scientific methods within a predefined period of time. In particular, they are able to independently plan, organize, develop, operate and present research tasks from the field of materials science. They develop advanced problem solution strategies to tackle different tasks by applying the theoretical knowledge gained in the Master course. Students are able to report and pre- sent the progress scientific projects, to summarize their results in an oral presentation, and to write								
	a scientifi	c project documen	tation.		researce in an oral pres				
3	Subject aims Independent scientific project Application of learned techniques from previous modules Independent identification and solution of scientific problems Literature survey Written and oral presentation of the results								
4	Teaching continuou discussion	methods us contact to advice ns	e the student, p	resentation c	f progress during grou	ıp seminars and			
5	Prerequis	ites for participation	on						
	successfu	l completion of pro	oject work (mo	dule 12) and	a total of at least 80 EC	CTS from all modules			
6	Assessme	ent methods	N 000/	1 1					
7	written th	iesis (40 to 150 pag	es) 80%, asses	sed oral pres	entation 20%				
/	prerequis	ovaluated thegin	nent of credit j	points					
8	This mod	ule is used in the f	following degre	e programm	es as well				
Ū	none	uie is used in the i	onowing degre	e programmi					
9	Impact of	grade on total grad	de						
	30/117	0 0							
10	Responsi	bility for module							
	all lecture	ers of the Master co	ourse						
11	Other inf	ormation							
	-								

